Skip to main content
Log in

Increased trehalose biosynthesis improves Mesorhizobium ciceri growth and symbiosis establishment in saline conditions

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Cicer arietinum (chickpea) is a legume very sensitive to salinity, and so are most of its rhizobial symbionts belonging to the species Mesorhizobium ciceri. We observed that exogenous trehalose (i.e., added to the growth medium) can significantly improve growth of M. ciceri strain Rch125 under moderate salinity. In order to test if endogenous trehalose (i.e., synthesized by the cell) could also enhance salt tolerance, strain Rch125 was genetically modified with various trehalose biosynthesis genes from Sinorhizobium meliloti 1021 (otsA, treS, treY) and Mesorhizobium loti MAFF 303099 (otsAB). We found that overexpression of otsA or otsAB, but not treS or treY, significantly improved M. ciceri Rch125 growth in saline media. This growth improvement correlated with enhanced trehalose accumulation in otsA- and otsAB-modified cells, suggesting that increased trehalose synthesis via trehalose-6-phosphate can enhance bacterial salt tolerance. Chickpea plants inoculated with M. ciceri Rch125 derivatives carrying extra otsAB or otsA genes formed more nodules and accumulated more shoot biomass than wild type inoculated plants when grown in the presence of NaCl. These results support the notion that improved salt tolerance of the bacterial symbiont can alleviate the negative effects of salinity on chickpeas, and that such improvement in M. ciceri can be achieved by manipulating trehalose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109. doi:10.1186/1471-2148-6-109

    Article  PubMed Central  PubMed  Google Scholar 

  • Babber S, Sheokand S, Malik S (2000) Nodule structure and functioning in chickpea (Cicer arietinum) as affected by salt stress. Biol Plant 43:269–273

    Article  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2012) Soil bacteria support and protect plants against abiotic stresses. In: A Shanker, B Venkateswarlu (eds) Abiotic stress in plants-mechanisms and adaptations doi:10.5772/23310

  • Blatny JM, Brautaset T, Winther-Larsen HC, Haugan K, Valla S (1997) Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol 63:370–379

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bordeleau LM, Prevost D (1994) Nodulation and nitrogen fixation in extreme environments. Plant Soil 161:115–125

    Article  CAS  Google Scholar 

  • Cardoso FS, Castro RF, Borges N, Santos H (2007) Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology 153:270–280

    Article  CAS  PubMed  Google Scholar 

  • Carpinelli J, Krämer R, Agosin E (2006) Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: Role of the TreYZ trehalose biosynthetic pathway. Appl Environ Microbiol 72:1949–1955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crowe JH (2007) Trehalose as a chemical chaperone fact and fantasy. Adv Exp Med Biol 594:143–158

    Article  PubMed  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Smet KA, Wetson A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146:199–208

    Article  PubMed  Google Scholar 

  • Dominguez-Ferreras A, Perez-Arnedo R, Becker A, Olivares J, Soto MJ, Sanjuan J (2006) Transcriptome profiling reveals the importance of plasmid pSmbB for osmoadaptation of Sinorhizobium meliloti. J Bacteriol 188:7617–7625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Domínguez-Ferreras A, Soto MJ, Pérez-Arnedo R, Olivares J, Sanjuán J (2009) Importance of trehalose biosynthesis for Sinorhizobium meliloti osmotolerance and nodulation of alfalfa roots. J Bacteriol 191(24):7490–7499

    Article  PubMed Central  PubMed  Google Scholar 

  • Eis C, Watkins M, Prohaska T, Nidetzky B (2001) Fungal trehalose phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune. Biochem J 356:757–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R

    Article  CAS  PubMed  Google Scholar 

  • Farias-Rodriguez R, Mellor RB, Arias C, Pena-Cabriales JJ (1998) The accumulation of trehalose in nodules of several cultivars of common bean (Phaseolus vulgaris) and its correlation with resistance to drought stress. Plant Physiol 102:353–359

    Article  CAS  Google Scholar 

  • Flowers TJ, Gaur PM, Gowda CL, Krishnamurthy L, Samineni S, Siddique KH, Turner NC, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509

    Article  CAS  PubMed  Google Scholar 

  • Freeman BC, Chen C, Beattie GA (2010) Identification of the trehalose biosynthetic loci of Pseudomonas syringae and their contribution to fitness in the phyllosphere. Environ Microbiol 12:1486–1497

    CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Gouffi K, Blanco C (2000) Is the accumulation of osmoprotectant the unique mechanism involved in bacterial osmoprotection. Int J Food Microbiol 55:171–174

    Article  CAS  PubMed  Google Scholar 

  • Gouffi K, Pica N, PichereauV BC (1999) Disaccharides as new class of non accumulating osmoprotectants for Sinorhizobium meliloti. Appl Environ Microbiol 65:1491–1500

    PubMed Central  CAS  PubMed  Google Scholar 

  • Han SE, Kwon HB, Lee SB, Yi BY, Murayama I, Kitamoto Y, Byun MO (2003) Cloning and characterization of a gene encoding trehalose phosphorylase (TP) from Pleurotus sajor-caju. Sci Dir 30:194–202

    CAS  Google Scholar 

  • Higo A, Katoh H, Ohmori K, Ikeuchi M, Ohmori M (2006) The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. Microbiology 152(14):979–987

    Article  CAS  PubMed  Google Scholar 

  • Iturriaga G, Suárez R, Nova-Franco B (2009) Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci 10:3793–3810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamaura Y, Sato S, Asamizu E, KatoT SS, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  CAS  PubMed  Google Scholar 

  • Klähn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13:551–562

    Article  PubMed  Google Scholar 

  • Krouma A (2009) Physiological and nutritional response of chickpea (Cicer arietinum L.) to salinity. Turk J Agric For 33:503–512

    CAS  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544–567

    Article  CAS  PubMed  Google Scholar 

  • Maatallah J, Berraho EB, Muñoz S, Sanjuan J, Lluch C (2002) Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco. J Appl Microbiol 93:531–540

    Article  CAS  PubMed  Google Scholar 

  • Mc Intyre HJ, Davies H, Hore TA, Miller SH, Dufour JP, Ronson CW (2007) Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance. Appl Environ Microbiol 73:3984–3992

    Article  CAS  Google Scholar 

  • Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposan Tn5 mutagenesis. J Bacteriol 149:114–122

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, CHS, Nueva York

    Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50:101–136

    Article  CAS  PubMed  Google Scholar 

  • Müller J, Xie ZP, Staehelin C, Mellor RB, Boller T, Wiemken A (1994) Trehalose and trehalase in root nodules from various legumes. Physiol Plant 90:86–92

    Article  Google Scholar 

  • Nakada T, Maruta K, Mitsuzumi H, Kubota M, Chaen H, Sugimono T, Kurimoto M, Tsujisaka Y (1995) Purification and characterization of a novel enzyme, maltooligosyl trehalose trehalohydrolase, from Arthrobacter sp. Q36. Biosci Biotechnol Biochem 59:2215–2218

    Article  CAS  PubMed  Google Scholar 

  • Nakada T, Ikegami S, Chaen H, Kubota M, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y (1996) Purification and characterization of thermostable maltooligosyl trehalose trehalohydrolase from the thermoacidohilic archaebacterium Sulfolobus acidocaldarius. Biosci Biotechnol Biochem 60:267–270

    Article  CAS  PubMed  Google Scholar 

  • Nandasena KG, O’Hara GW, Tiwari RP, Willlems A, Howieson JG (2007) Mesorhizobium ciceri biovar biserrulae, a novel biovar nodulating the pasture legume Biserrula pelecinus L. Int J Syst Evol Microbiol 57:1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Nandasena KG, Yates R, Tiwari R, O’Hara G, Howieson J, Ninawi M, Chertkov O, Detter C, Tapia R, Han S, Woyke T, Pitluck S, Nolan M, Land M, Liolios K, Pati A, Copeland A, Kyrpides NC, Ivanova N, Goodwin L, Meenakshi U, Reeve W (2013) Complete genome sequence of Mesorhizobium ciceri bv. biserrulae type strain (WSM1271T). Stand Genomic Sci 9:462–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59(1):417–441

    Article  CAS  PubMed  Google Scholar 

  • Pichereau V, Hartke A, Auffray Y (2000) Starvation and osmotic stress induced multiresistances. Influence of extracellular compounds. Int J Food Microbiol 55:19–25

    Article  CAS  PubMed  Google Scholar 

  • Purvis JE, Yomano LP, Ingram LO (2005) Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl Environ Microbiol 71:3761–3769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, Vargas C (2012) Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol 12:207. doi:10.1186/1471-2180-12-207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruhal R, Kataria R, Choudhury B (2013) Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 6(5):493–502

    Article  PubMed Central  PubMed  Google Scholar 

  • Schiraldi C, Di Lernia I, De Rosa M (2002) Trehalose production: exploiting novel approaches. Trends Biotechnol 20:420–425

    Article  CAS  PubMed  Google Scholar 

  • Schluepmann H, Berke L, Sanchez-Perez GF (2012) Metabolism control over growth: a case for trehalose-6-phosphate in plants. J Exp Bot 63:3379–3390

    Article  CAS  PubMed  Google Scholar 

  • Simon R, Priefer U, Pûhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotech 1:784–791

    Article  CAS  Google Scholar 

  • Soussi M, Ocana A, Lluch C (1998) Effects of salt stress on growth, photosynthesis and nitrogen fixation in chickpea (Cicer aritiunum). J Exp Bot 49:1329–1337

    Article  CAS  Google Scholar 

  • Streeter JG (1985) Accumulation of α, α -trehalose by rhizobium bacteria and bacteroids. J Bacteriol 164:78–84

    PubMed Central  CAS  PubMed  Google Scholar 

  • Streeter JG, Bhagwat A (1999) Biosynthesis of trehalose from maltooligosaccharides in rhizobia. Can J Microbiol 45:716–721

    Article  CAS  PubMed  Google Scholar 

  • Suárez R, Wong A, Ramírez M, Barraza A, Orozco MC, Cevallos MA, Lara M, Hernández G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6 phosphate synthase in rhizobia. Mol Plant Microbe Interact 21:958–966

    Article  PubMed  Google Scholar 

  • Sugawara M, Cytryn EJ, Sadowsky MJ (2010) Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation. Appl Environ Microbiol 76(4):1071–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tejera NA, Iribarne C, Lopez M, Herrera-Cervera JA, Lluch C (2005) Physiological implications of trehalose from Phaseolus vulgaris root nodules: partial purification and characterization. Plant Physiol Biochem 43:355–361

    Article  Google Scholar 

  • Vincent JM (1970) A Manual for the Practical Study of Root-Nodule Bacteria. Oxford, England 164p

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants AECI 173/03/P and AECI A/6935/06 from Agencia Española de Cooperación Internacional to JS and BB, and grants BIO2005-08089-C02-01 (Ministerio de Educación y Ciencia, Spain) and BIO2008-02447 (Ministerio de Ciencia e Innovación) to JS. Help by Rebeca Pérez-Arnedo is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Sanjuán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussaid, S., Domínguez-Ferreras, A., Muñoz, S. et al. Increased trehalose biosynthesis improves Mesorhizobium ciceri growth and symbiosis establishment in saline conditions. Symbiosis 67, 103–111 (2015). https://doi.org/10.1007/s13199-015-0338-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0338-y

Keywords

Navigation