Skip to main content

Advertisement

Log in

The role of symbiosis in the transition of some eukaryotes from aquatic to terrestrial environments

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Symbiosis may have played a far greater role in biological evolution than was previously thought. The symbiosis that made the colonization of land by plants possible was as a consequence of the development of arbuscular mycorrhizae. However, the present review draws attention to the role of lichens in assisting in this transition and to the phenomenon of lichenization. The recent discovery of lichen fossils in marine phosphorites in China and molecular clock estimates indicate that lichenized fungi were already present in Precambrian seas and, like contemporary species, played a role as pioneers in occupying new habitats. There is evidence that the holistic properties of associations between fungi and cyanobacteria and/or green algae facilitated the transition onto land and the subsequent colonization of terrestrial habitats. A key role in this process was played by poikilohydry. The algal components of delichenized fungi, along with lichens and photosynthetic aquatic organisms all contributed to the increase in atmospheric oxygen. Lichens, fungi and cyanobacteria settling on land were undoubtedly important in the formation of soils and thereafter enhancing their fertility. It is suggested that vascular and other green plants were able grow on these primitive soils that were stabilized by the growth of lichens, algae and cyanobacteria in a similar way to those which play a role in desert crusts at the present time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alizadeh O (2011) Mycorrhizal symbiosis. Adv Stud Biol 3:273–281

    Google Scholar 

  • Altermann S (2004) A second look at Letharia (Th.Fr.) Zahlbr. Bull Calif Lichen Soc 11(2):33–36

    Google Scholar 

  • Antoine P-O, De Franceschi D, Flynn JJ, Nel A, Baby P, Benammi M, Calderón Y, Espurt N, Goswami A, Salas-Gismondi R (2006) Amber from western Amazonia reveals Neotropical diversity during the middle Miocene. Proc Natl Acad Sci 103(37):13595–13600

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aptroot A, Seaward MRD (1999) Annotated checklist of Hong Kong lichens. Trop Bryol 17:57–101

    Google Scholar 

  • Becker B, Marin B (2009) Streptophyte algae and the origin of embryophytes. Ann Bot 103:999–1004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beiggi S, Piercey-Normore MD (2007) Evolution of ITS ribosomal RNA secondary structures in fungal and algal symbionts of selected species of Cladonia sect Cladonia (Cladoniaceae, Ascomycotina). J Mol Evol 64:528–542

    CAS  PubMed  Google Scholar 

  • Beraldi-Campesi H (2013) Early life on land and the first terrestrial ecosystems. Ecol Process 2:1. doi:10.1186/2192-1709-2-1

    Google Scholar 

  • Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi: how close are we? Fungal Biol Rev 24:1–16

    Google Scholar 

  • Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577

    PubMed Central  PubMed  Google Scholar 

  • Blaha J, Baloch E, Grube G (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Bot J Linn Soc 88:283–293

    Google Scholar 

  • Błaszkowski J (2004) Przeszłość, teraźniejszość i przyszłość klasyfikacji arbuskularnych grzybów mikoryzowych [The past, present and future of classification of arbuscular mycorrhizal fungi]. Kosmos 53:17–24

    Google Scholar 

  • Bock R (2010) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22. doi:10.1016/j.tplants.2009.10.001

    CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498

    CAS  PubMed  Google Scholar 

  • Brooks WR (2012) The importance of symbioses in biological systems. J Mar Sci Res Dev 2:1–3. doi:10.4172/2155-9910.1000e108

    Google Scholar 

  • Büdel B, Vivas M, Lange OL (2013) Lichen species dominance and the resulting photosynthetic behavior of Sonoran Desert soil crust types (Baja California, Mexico). Ecol Process 2:6–15

    Google Scholar 

  • Cairney JWG (2000) Evolution of mycorrhiza systems. Naturwissenschaften 87:467–475

    CAS  PubMed  Google Scholar 

  • Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 57:484–495

    CAS  PubMed  Google Scholar 

  • Carrapiço F (2010) How symbiogenic is evolution? Theory Biosci 129(2–3):135–139

    PubMed  Google Scholar 

  • Carrapiço F (2012) The symbiotic phenomenon in the evolutive context. In: Pombo O, Rahman S, Torres JM, Symon J (eds) Special sciences and the unity of science. Springer, Heidelberg, pp 113–119

    Google Scholar 

  • Chaisson EJ (2001) Cosmic evolution: the rise of complexity in nature. Harvard University Press, Cambridge

    Google Scholar 

  • Chu FJ, Seaward MRD, Hodgkiss IJ (2000) Effects of wave exposure and aspect on Hong Kong supralittoral lichens. Lichenologist 32:155–170

    Google Scholar 

  • Church AH (1921) The lichen as transmigrant. J Bot 59(7–13):40–46

    Google Scholar 

  • Clarke JT, Warnock RCM, Donoghue PCJ (2011) Establishing a time-scale for plant evolution. New Phytol 192:266–301

    PubMed  Google Scholar 

  • Cooper R (1953) The role of lichens in soil formation and plant succession. Ecology 34:805–807

    Google Scholar 

  • Cordeiro LMC, Reis RA, Cruz LM, Stocker-Wörgötter E, Grube M, Iacomini M (2005) Photobionts of selected lichens from coastal vegetation of Brazil. FEMS Microbiol Ecol 54:381–390

    CAS  PubMed  Google Scholar 

  • Corning PA (1998) The synergism hypothesis. On the concept of synergy and its role in the evolution of complex systems. J Soc Evol Syst 21:133–172

    Google Scholar 

  • Corning PA (2014) Systems theory and the role of synergy in the evolution of living systems. Syst Res Behav Sci 31:181–196

    Google Scholar 

  • Czarnota P (2009) Symbiozy porostowe w świetle interakcji pomiędzy grzybami i fotobiontami [Lichen symbioses in the light of relationships between mycobionts and fotobionts]. Kosmos 58:229–248

    Google Scholar 

  • de la Torre R, Sancho LG, Horneck G, de los Rios A, Wierzchos J, Olsson-Francis K, Cockell Ch S, Rettberg P, Berger T, de Vera J-PP, Ott S, Frías JM, Melendi PG, Lucas MM, Reina M, Pintado A, Demets R (2010) Survival of lichens and bacteria exposed to outer space conditions—results of the Lithopanspermia experiments. Icarus 208:736–748

    Google Scholar 

  • de Vera J-P, Schulze-Makuch D, Khan A, Lorek A, Koncz A, Möhlmann D, Spohn T (2014) Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet Space Sci 8:182–190

    Google Scholar 

  • Delaux P-M, Séjalon-Delmas N, Bécard G, Ané J-M (2013) Evolution of the plant–microbe symbiotic ‘toolkit’. Trends Plant Sci 18:298–304

    CAS  PubMed  Google Scholar 

  • Delmail D, Grube M, Parrot D, Cook-Moreau J, Boustie J, Labrousse P, Tomasi S (2012) Halotolerance in lichens: symbiotic coalition against salt stress. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, Dordrecht, pp 115–148. doi:10.1007/978-1-4614-4747-4

    Google Scholar 

  • Deschamps P (2014) Primary endosymbiosis: have cyanobacteria and Chlamydiae ever been roommates? Acta Soc Bot Pol 83:291–302

    Google Scholar 

  • Dimijian GG (2000) Evolving together: the biology of symbiosis, part 1. Proc (Bayl Univ Med Cent) 13:217–226

    CAS  Google Scholar 

  • Doebeli M, Knowlton N (1998) The evolution of interspecific mutualisms. Proc Natl Acad Sci 95:8676–8680

    PubMed Central  CAS  PubMed  Google Scholar 

  • Domaschke S, Fernández-Mendoza F, García MA, Martín MP, Printzen C (2012) Low genetic diversity in Antarctic populations of the lichen-forming ascomycete Cetraria aculeata and its photobiont. Polar Res 31:1–13. doi:10.3402/polar.v31i0.17353

    Google Scholar 

  • Edwards DS (1986) Aglaophyton major, a non-vascular land-plant from the Devonian Rhynie chert. Bot J Linn Soc 93:173–204

    Google Scholar 

  • Eickmeier WG (1986) The correlation between high-temperature and desiccation tolerances in a poikilohydric desert plant. Can J Bot 64:611–617

    CAS  Google Scholar 

  • Eriksson OE (2005) Ascomyceternas ursprung och evolution – Protolichenes-hypotesen. Svensk Mykol Tidsk 26:22–33

    Google Scholar 

  • Farrar JF (1976) The lichen as an ecosystem: observation and experiment. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 385–406

    Google Scholar 

  • Federal Geographic Data Committee (FGDC) (2012) Coastal and marine ecological classification standard. FGDC-STD-18-2012. Reston, VA Federal Geographic Data Committee

  • Fletcher A (1973) The ecology of maritime (supralittoral) lichens on some rocky shores of Anglesey. Lichenologist 5:401–422

    Google Scholar 

  • Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495

    CAS  PubMed  Google Scholar 

  • Garty J, Giele C, Krumbein WE (1982) On the occurrence of pyrite in a lichen-like inclusion in Eocene amber (Baltic). Palaeogeogr Palaeoclimatol Palaeoecol 39:139–147

    Google Scholar 

  • Gasulla F, Herrero J, Esteban-Carrasco A, Ros-Barceló A, Barreno E, Zapata JM, Guéra A (2012) Photosynthesis in lichen: light reactions and protective mechanisms. In: Najafpour MM (ed) Advances in photosynthesis – fundamental aspects. InTech, Rijeka, pp 149–174. doi:10.5772/26204

    Google Scholar 

  • Gilbert OL, Giavarini VJ (1997) The lichen vegetation of acid watercourses in England. Lichenologist 29:347–367

    Google Scholar 

  • Giordano S, Colacino C, Spagnuolo V, Basile A, Esposito A, Castaldo-Cobianchi R (1993) Morphological adaptation to water uptake and transport in the poikilohydric moss Tortula ruralis. G Bot Ital 127:1123–1132

    Google Scholar 

  • Gostinčar C, Muggia L, Grube M (2012) Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses. Front Microbiol 3:390. doi:10.3389/fmicb.2012.00390

    PubMed Central  PubMed  Google Scholar 

  • Gradstein FM, Ogg JG, Van Kranendonk M (2008) On the geologic time scale. Newsl Stratigr 43:5–13

    Google Scholar 

  • Green TGA, Lange OL (1995) Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes. Ecophysiol Photosynth 100:319–341

    Google Scholar 

  • Grube M, Hawksworth DL (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycol Res 111:1116–1132

    PubMed  Google Scholar 

  • Gueidan C, Villaseñor CR, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guzow-Krzeminska B (2006) Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by ITS rDNA analyses. Lichenologist 38:469–476

    Google Scholar 

  • Harańczyk H, Nowak P, Olech M (2013) Porosty antarktyczne – sposoby przetrwania w skrajnie nieprzyjaznym środowisku [Antarctic lichens – how to survive in an extremely hostile environment]. Kosmos 62:373–380

    Google Scholar 

  • Harris PM (1996) Competitive equivalence in a community of lichens on rock. Oecologia 108:663–668

    Google Scholar 

  • Hartard B, Cuntz M, Máguas C, Lakatos M (2009) Water isotopes in desiccating lichens. Planta 231:179–193

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hausrath EM, Neaman A, Brantley SL (2009) Elemental release rates from dissolving basalt and granite with and without organic ligands. Am J Sci 309:633–660

    CAS  Google Scholar 

  • Hawksworth DL (1988) The variety of fungal–algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3–20

    Google Scholar 

  • Hawksworth DL (2000) Freshwater and marine lichen-forming fungi. In: Hyde KD, Ho WH, Pointing SB (eds) Aquatic mycology across the millennium. Fungal Diversity 5:1–7. http://www.fungaldiversity.org/fdp/sfdp/FD_5_1-7.pdf

  • Heber U, Bilger W, Bligny R, Lange OL (2000) Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions. Planta 211:770–780

    CAS  PubMed  Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    CAS  PubMed  Google Scholar 

  • Heilmeier H, Durka W, Woitke M, Hartung W (2005) Ephemeral pools as stressful and isolated habitats for the endemic aquatic resurrection plant Chameagigas intrepidus. Phytocoenologia 35:449–468

    Google Scholar 

  • Helms GWF (2003) Taxonomy and symbiosis in associations of Physciaceae and Trebouxia. Biologischen Fakultät der Georg-August Universität Göttingen. https://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-0006-AE69-7/helms.pdf?sequence=1

  • Henskens FL, Green TGA, Wilkins A (2012) Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Ann Bot 110:555–563

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heywood A (2007) Ideologie polityczne. Wprowadzenie [Political ideologies. Introduction]. Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  • Hill DJ (2009) Asymmetric co-evolution in the lichen symbiosis caused by a limited capacity for adaptation in the photobiont. Bot Rev 75:326–338

    Google Scholar 

  • Högnabba F, Stenroos S, Thell A (2009) Phylogenetic relationships and evolution of photobiont associations in the Lobariaceae (Peltigerales, Lecanoromycetes, Ascomycota). Bibl Lichenol 100:157–187

    Google Scholar 

  • Honegger R (1996) Morphogenesis. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 65–87

    Google Scholar 

  • Honegger R (2001) The symbiotic phenotype of lichen-forming ascomycetes. In: Hock B (ed) The mycota. IX Fungal Associations. Springer, Heidelberg, pp 165–188

    Google Scholar 

  • Honegger R, Edwards D, Axe L (2013) The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol 197:264–275, http://meetingorganizer.copernicus.org/EGU2012/EGU2012-2113.pdf

    PubMed  Google Scholar 

  • Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1:103. doi:10.1038/ncomms1105

    PubMed  Google Scholar 

  • Jabłońska A (2012) Porosty z rodzaju Porpidia Körb. występujące w Polsce [The lichen genus Porpidia Körb. in Poland]. Monogr Bot 102:5–123

    Google Scholar 

  • Jackson HB, Leavitt SD, Krebs T, Larry, Clair LLS (2005) Lichen flora of the eastern Mojave Desert: Blackrock Arizona, Mojave County, Arizona, USA. Evansia 22(1):30–38

    Google Scholar 

  • Johnson LE (1991) A morally deep world: an essay on moral significance and environmental ethics. Cambridge University Press, Cambridge, pp 162–163

    Google Scholar 

  • Jurina AL, Putiatina ON (2000) Revision of the genus Flabellifolium Stone, 1973 (group of Paleozoic plants with Ginkgo-like megaphylls) and the first findings of its Givetian members in Central Kazakhstan. Paleontol Zh 3:103–110

    Google Scholar 

  • Kaasalainen U, Fewer DP, Jokela J, Wahlsten M, Sivonen K, Rikkinen J (2013) Lichen species identity and diversity of cyanobacterial toxins in symbiosis. New Phytol 198:647–651

    PubMed  Google Scholar 

  • Kappen L, Valladares F (2007) Opportunistic growth and desiccation tolerance: the ecological success of poikilohydric autotrophs. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology, 2nd edn. CRC Press, Boca Raton, pp 8–66

    Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    CAS  Google Scholar 

  • Knauth LP, Kennedy MJ (2009) The late Precambrian greening of the Earth. Nature 460:728–732

    CAS  PubMed  Google Scholar 

  • Kohlmeyer J, Hawksworth DL, Volkmann-Kohlmeyer B (2004) Observations on two marine and maritime “borderline” lichens: Mastodia tesellata and Collemopsidium pelvetiae. Mycol Prog 3:51–56

    Google Scholar 

  • Kopczyński K (2006) Zapis kopalny grzybów i organizmów grzybopodobnych [Fossil record of fungi and pseudofungi]. Prz Geol 54(3):231–237

    Google Scholar 

  • Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as comparedwith its isolated symbiotic partners. Proc Natl Acad Sci 102:3141–3146

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lalley JS, Viles HA (2005) Terricolous lichens in the northern Namib Desert of Namibia: distribution and community composition. Lichenologist 37:77–91

    Google Scholar 

  • Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397

    CAS  PubMed  Google Scholar 

  • Larsson SG (1978) Baltic amber – a palaeobiological study. Entomonograph vol.1. Scandinavian Science Press, Klampenborg

    Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    PubMed  Google Scholar 

  • Liba CM, Ferrara FIS, Mangio GP, Fantinatti-Garboggini F, Albuquerque RC, Pavan C, Ramos PL, Moreira-Filho CA, Barbosa CR (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101:1076–1086

    CAS  PubMed  Google Scholar 

  • Liu YJ, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci 101:4507–4512

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lücking R, Grube M (2002) Facultative parasitism and reproductive strategies in Chroodiscus (Ascomycota, Ostropales). Stapfia 80:267–292

    Google Scholar 

  • Lumbsch HT, Schmitt I, Palice Z, Wiklund E, Ekman S, Wedin M (2004) Supraordinal phylogenetic relationships of Lecanoromycetes based on a Bayesian analysis of combined nuclear and mitochondrial sequences. Mol Phylogenet Evol 31:822–832

    CAS  PubMed  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    CAS  PubMed  Google Scholar 

  • MacGinitie HD (1937) The flora of the Weaverville Beds of Trinity County, California. Carnegie Inst Wash Publ 465:83–151

    Google Scholar 

  • Margulis L, Sagan D (1990) Origins of sex: three billion years of genetic recombination. Yale University Press, New Haven

    Google Scholar 

  • Martin BD, Schwab E (2013) Current usage of symbiosis and associated terminology. Int J Biol 5(1):32–45

    Google Scholar 

  • Martín MP, Coucheron DG, Johansen S (2003) Structural features and evolutionary considerations of group IB introns in SSU rDNA of the lichen fungus Teloschistes. Fungal Genet Biol 40:252–260

    PubMed  Google Scholar 

  • Matsunaga KKS, Stockey RA, Tomescu AMF (2013) Honeggeriella complexa gen. et sp. nov., a heteromerous lichen from the Lower Cretaceous of Vancouver Island (British Columbia, Canada). Am J Bot 100:450–459

    PubMed  Google Scholar 

  • McCourt RM, Delwiche CF, Karolc KG (2004) Charophyte algae and land plant origins. Trends Ecol Evol 19:661–666

    PubMed  Google Scholar 

  • McCune B, Schoch C, Root HT, Kageyama SA, Miadlikowska J (2011) Geographic, climatic, and chemical differentiation in the Hypogymnia imshaugii species complex (Lecanoromycetes, Parmeliaceae) in North America. Bryologist 114:526–544

    Google Scholar 

  • McDonald TR, Mueller O, Dietrich FS, Lutzoni F (2013) High-throughput genome sequencing of lichenizing fungi to assess gene loss in the ammonium transporter/ammonia permease gene family. BioMed Central Genomics 14:225. doi:10.1186/1471-2164-14-225

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miadlikowska J, Kauff F, Hofstetter V, Fraker E, Grube M, Hafellner J, Reeb V, Hodkinson BP, Kukwa M, Lücking R, Hestmark G, Otalora MG, Rauhut A, Büdel B, Scheidegger C, Timdal E, Stenroos S, Brodo IM, Perlmutter GB, Ertz D, Diederich P, Lendemer JC, May PF, Schoch C, Arnold AE, Gueidan C, Tripp E, Yahr R, Robertson C, Lutzoni F (2006) New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98:1088–1103

    CAS  PubMed  Google Scholar 

  • Muggia L, Vancurova L, Skaloud P, Peksa O, Wedin M, Grube M (2013) The symbiotic playground of lichen thalli – a highly flexible photobiont association in rock-inhabiting lichens. FEMS Microbiol Ecol 85:313–325

    CAS  PubMed  Google Scholar 

  • Myllys L, Stenroos S, Thell A, Kuusinen M (2007) High cyanobiont selectivity of epiphytic lichens in old growth foreal forest of Finland. New Phytol 173:621–629

    CAS  PubMed  Google Scholar 

  • Naeem S, Li S (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509

    CAS  Google Scholar 

  • Nash TH (2008) Introduction. In: Nash TH (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 1–8

    Google Scholar 

  • Niklas KJ, Kutschera U (2010) The evolution of the land plant life cycle. New Phytol 185:27–41

    CAS  PubMed  Google Scholar 

  • Okamoto N, Inouye I (2005) A secondary symbiosis in progress? Science 310:287. doi:10.1126/science.1116125

    CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Mycol Res 10:763–775

    Google Scholar 

  • Peacock KA (2011) Symbiosis in ecology and evolution. In: Gabbay DM, Thagard P, Woods J (eds) Handbook of the philosophy of science: philosophy of ecology. Elsevier, Amsterdam, pp 219–250

    Google Scholar 

  • Peréz-Ortega S, de los Ríos A, Crespo A, Sancho LG (2010) Symbiotic lifestyle and phylogenetic relationships of the bionts of Mastodia tessellata (Ascomycota, incertae sedis). Am J Bot 97:738–752

    PubMed  Google Scholar 

  • Pérez-Quintero AL, Cerón BW (2009) Lichen community structure and morphological changes in the genus Sticta (Stictaceae) associated to an altitude gradient. Acta Biol Colombiana 14:157–170

    Google Scholar 

  • Peterson EB (2000) An overlooked fossil lichen (Lobariaceae). Lichenologist 32:298–300

    Google Scholar 

  • Pirozynski KA, Dalphe Y (1989) Geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis 7:1–36

    Google Scholar 

  • Podbielkowski Z, Rejment-Grochowska I, Skirgiełło A (1979) Rośliny zarodnikowe [Spore plants]. Państwowe Wydawnictwo Naukowe, Warszawa

    Google Scholar 

  • Poinar GO, Peterson EB, Platt JL (2000) Fossil Parmelia in New World amber. Lichenologist 32:263–269

    Google Scholar 

  • Porembski S, Barthlott W (2000) Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecol 151:19–28

    Google Scholar 

  • Prieto M, Wedin M (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS One 8(6), e65576. doi:10.1371/journal.pone.0065576

    PubMed Central  CAS  PubMed  Google Scholar 

  • Proctor MCF, Tuba Z (2002) Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytol 156:327–349

    Google Scholar 

  • Qiu Y-L (2008) Phylogeny and evolution of charophytic algae and land plants. J Syst Evol 46:287–306

    Google Scholar 

  • Rambold G, Friedl T, Beck A (1998) Photobionts in lichens: possible indicators of phylogenetic relationships? Bryologist 101:392–397

    Google Scholar 

  • Raven JA (1999) The size of cells and organisms in relation to the evolution of embryophytes. Plant Biol 1:2–12

    Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Expl Bot 52:381–401

    CAS  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci 91:11841–11843

    PubMed Central  CAS  PubMed  Google Scholar 

  • Renobales G, Noya R (1991) Estudio morfológico comparado de Verrucaria maura y V. amphibia en la Costa Vasca. Acta Bot Malacitana 16:149–156

    Google Scholar 

  • Retallack GJ (1994) Were the Ediacaran fossils lichens? Paleobiology 20:523–544

    Google Scholar 

  • Retallack GJ (1995) Ediacaran lichens – reply to Waggoner. Paleobiology 21:398–399

    Google Scholar 

  • Retallack GJ (2014) Precambrian life on land. Palaeobotanist 63:1–15

    Google Scholar 

  • Rikkinen J (2003) Calicioid lichens from European Tertiary amber. Mycologia 95:1032–1036

    PubMed  Google Scholar 

  • Rikkinen J, Poinar G (2000) A new species of resinicolous Chaenothecopsis (Mycocaliciaceae, Ascomycota) from 20 million year old Bitterfeld amber, with remarks on the biology of resinicolous fungi. Mycol Res 104:7–15

    Google Scholar 

  • Rikkinen J, Poinar GO Jr (2002) Fossilized Anzia (Lecanorales, lichen-forming Ascomycota) from European Tertiary amber. Mycol Res 106:984–990

    Google Scholar 

  • Rikkinen J, Poinar GO Jr (2008) A new species of Phyllopsora (Lecanorales, lichen-forming Ascomycota) from Dominican amber, with remarks on the fossil history of lichens. J Expl Bot 59:1007–1011

    CAS  Google Scholar 

  • Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized Ascomycetes) along a transect of the Antarctic peninsula. Mol Biol Evol 19:1209–1217

    CAS  PubMed  Google Scholar 

  • Rundel PW (1978) Ecological relationships of desert fog zone lichens. Bryologist 81:277–293

    Google Scholar 

  • Schlensog M, Schroeter B (2000) Poikilohydry in Antarctic cryptogams and its influence on photosynthetic performance in mesic and xeric habitats. In: Davison W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for a wider ecological understanding. Caxton, Christchurch, pp 175–182

    Google Scholar 

  • Schoch CL, Crous PW, Groenewald JZ, Boehm EW, Burgess TI, de Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EB, Kohlmeyer J, Kruys A, Li YM, Lücking R, Lumbsch HT, Marvanova L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJ, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JH, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schöller H (1997) Systematik der Flechten. In: Schöller H (ed) Flechten. Geschichte, Biologie, Systematik, Ökologie, Naturschutz und kulturelle Bedeutung. Senckenberg Naturf Gesellschaft 27:68–82

  • Schwab AJ (1986) Rostfarbene Arten der Sammelgattung Lecidea (Lecanorales). Revision der Arten Mittel- und Nordeuropas. Mitt Bot Staatssamml München 22:221–476

    Google Scholar 

  • Seaward MRD (1988) Contribution of lichens to ecosystems. In: Galun M (ed) CRC handbook of lichenology, vol 2. CRC Press, Boca Raton, pp 107–129

    Google Scholar 

  • Selosse M-A, Le Tacon F (1998) The land flora: a phototroph-fungus partnership? Trends Ecol Evol 13:15–20

    CAS  PubMed  Google Scholar 

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Google Scholar 

  • Ślusarczyk E (1996) Ewolucja strategii życiowych Glomales [Evolution of life strategies in Glomales]. Wiadomości Botaniczne 40:29–35

    Google Scholar 

  • Smith AL (1921) Lichens. Cambridge University Press, Cambridge

    Google Scholar 

  • Speidel M (2000) The parasitic host: symbiosis contra neo-Darwinism. Pli 9:119–138

    Google Scholar 

  • Steudel B, Hector A, Friedl T, Löfke C, Lorenz M, Wesche M, Kessler M, Gessner M (2012) Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecol Lett 15:1397–1405

    PubMed  Google Scholar 

  • Stubblefield SP, Taylor TN, Trappe JM (1987) Fossil mycorrhizae: a case for symbiosis. Science 237:59–60

    CAS  PubMed  Google Scholar 

  • Summerfield TC, Eaton-Rye JJ (2006) Pseudocyphellaria crocata, P. neglecta and P. perpetua from the Northern and Southern Hemispheres are a phylogenetic species and share cyanobionts. New Phytol 170:597–607

    CAS  PubMed  Google Scholar 

  • Syvanen M (1986) Cross-species gene transfer: a major factor in evolution? Trends Genet 107:685–696

    Google Scholar 

  • Taylor TN, Hass H, Remy W, Kerp H (1995) The oldest fossil lichen. Nature 378:244

    CAS  Google Scholar 

  • Tehler A (1996) Systematics, phylogeny and classification. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 217–239

    Google Scholar 

  • Tehler A, Wedin M (2008) Systematics of lichenized fungi. In: Nash TH (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 336–352

    Google Scholar 

  • Tester M, Smith SE, Smith FA (1987) The phenomenon of “nonmycorrhizal” plants. Can J Bot 65:419–431

    Google Scholar 

  • Thüs H, Aptroot A, Seaward MRD (2014) Freshwater lichens. In: Jones EBG, Hyde KD, Pang K-L (eds) Freshwater fungi and fungal-like organisms. De Gruyter, Berlin, pp 333–358

    Google Scholar 

  • Toole G, Toole S, Toole SM (2004) Essential A2 biology for OCR. Nelson Thomas, Cheltenham

    Google Scholar 

  • Tunjić M, Korać P (2013) Vertical and horizontal gene transfer in lichens. Period Biol 115:321–329

    Google Scholar 

  • Turnau K, Jurkiewicz A, Grzybowska B (2002) Rola mikoryzy w bioremediacji terenów zanieczyszczonych [The role of mycorrhiza in bioremediation of polluted sites]. Kosmos 2:185–194

    Google Scholar 

  • Vinebrooke RD, Cottingham KL, Norberg J, Scheffer M, Dodson SI, Maberly SC, Sommer U (2004) Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104:451–457

    Google Scholar 

  • Waggoner BM (1995) Ediacaran lichens: a critique. Paleobiology 21:393–397

    Google Scholar 

  • Walter H, Kreeb H (1970) Die Hydration und Hydratur des Protoplasmas der Pflanzen und ihre öko-physiologische Bedeutung. Springer, Vienna

    Google Scholar 

  • Wedin M, Döring H, Gilestam G (2004) Saprotrophy and lichenization as options for the same fungal species on different substrata: environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol 164:459–465

    Google Scholar 

  • Wernegreen JJ (2004) Endosymbiosis: lessons in conflict resolution. PLoS Biol 2, e68. doi:10.1371/journal.pbio.0020068

    PubMed Central  PubMed  Google Scholar 

  • Williams TA, Foster PG, Nye TMW, Cox CJ, Embley TM (2012) A congruent phylogenomic signal places eukaryotes within the Archaea. Proc R Soc B 279:4870–4879

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wirth V (1972) Die Silikatflechten-Gemeinschaften im ausseralpinen Zentraleuropa. Dissertationes Botanicae, Lehre 17:213–240

  • Witzany G (2010) Biocommunication and natural genome editing. Springer, Dordrecht

    Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am most grateful to Prof. David Richardson (Halifax, Canada) and Prof. Mark Seaward (Bradford, England) for their most helpful criticism and linguistic correction of draft versions of this paper and to Robert Janczar and Dr Michał Lipnicki for extensive help and linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwik I. Lipnicki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipnicki, L.I. The role of symbiosis in the transition of some eukaryotes from aquatic to terrestrial environments. Symbiosis 65, 39–53 (2015). https://doi.org/10.1007/s13199-015-0321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0321-7

Keywords

Navigation