Skip to main content
Log in

The diet of the Harlequin crab Lissocarcinus orbicularis, an obligate symbiont of sea cucumbers (holothuroids) belonging to the genera Thelenota, Bohadschia and Holothuria

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The present paper characterizes, for the first time, the diet of the Harlequin crab Lissocarcinus orbicularis, an obligate symbiotic crab that associates with sea cucumbers (holothuroids) belonging to the genera Thelenota, Bohadschia and Holothuria. These tropical holothuroids host a rich symbiotic community in the Indo-West Pacific Ocean of which the Harlequin crab is the best known. The diet of L. orbicularis was characterized by analyzing the microscopic, molecular and isotopic signatures obtained from its gastric content. The presence of sea cucumber ossicles in the gastric mills of the crabs suggests that symbionts eat the superficial integument of their host and this was supported by the fact that Holothuroid DNA was detected in the stomach of L. orbicularis after DGGE and sequencing of the 18S rDNA gene. The stable isotopic δ13C and δ15N values of crab tissues were compared with diverse potential food sources including three holothuroids, three algae, one sea grass as well as the organic matter contained in the water column, in the sediment, and the second most abundant symbiont, the polychaete Gastrolepidia clavigera. The low δ15N values of crabs suggests that the crabs do not exclusively feed on sea cucumber tissue but assimilate diverse food sources such as sea grasses and organic matter contained in sediment that have similar δ13C values. There were no differences between the feeding of males and females but there was a positive correlation between the carapace length and the stable isotopic values indicating a shift of the food source as crabs grow larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  PubMed  CAS  Google Scholar 

  • Bliss DE, Mantel LH (1985) Integument, pigments and hormonal processes. In: Bliss DE (ed) The biology of crustaceans. Academic, New York, p 549

    Google Scholar 

  • Bodin N, Le Loc’h F, Hily C (2007) Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues. J Exp Mar Biol Ecol 341:168–175. doi:10.1016/j.jembe.2006.09.008

    Article  CAS  Google Scholar 

  • Britaev TA, Lyskin SA (2002) Feeding of the symbiotic polychaete Gastrolepidia clavigera (polynoidae) and its interactions with its hosts. Dokl Biol Sci 385:352–356. doi:10.1023/a:1019964918471

    Article  PubMed  CAS  Google Scholar 

  • Caulier G, Parmentier E, Lepoint G, Van Nedervelde F, Eeckhaut I (2012) Characterization of the population of the Harlequin crab, Lissocarcinus orbicularis Dana, 1852, an obligate symbiont of holothuroids, in Toliara bay (Madagascar). In: Kroh A, Reich M (eds) Echinoderm Research 2010: Proceedings of the Seventh European Conference on Echinoderms, Göttingen, Germany, 2–9 October 2010. Zoosymposia, 7, pp 316

  • Caulier G, Flammang P, Gerbaux P, Eeckhaut I (2013) When a repellent becomes an attractant: harmful saponins are kairomones attracting the symbiotic Harlequin crab. Sci Rep 3:2639. doi:10.1038/srep02639

    Article  PubMed  Google Scholar 

  • De Bruyn C, Rigaud T, David B, De Ridder C (2009) Nature and consequences of the symbiotic relationship between the crab Dissodactylus primitivus and its echinoid host Meoma ventricosa. Mar Ecol Prog Ser 375:173–183. doi:10.3354/meps07733

    Article  Google Scholar 

  • Deniro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351. doi:10.1016/0016-7037(81)90244-1

    Article  CAS  Google Scholar 

  • Diez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951. doi:10.1128/aem.67.7.2942-2951.2001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eeckhaut I, Jangoux M (1993) Integument and epidermal sensory structures of Myzostoma cirriferum (myzostomida). Zoomorphology 113:33–45. doi:10.1007/bf00430975

    Article  Google Scholar 

  • Eeckhaut I, Parmentier E, Becker P, Gomez da silva S, Jangoux M (2004) Parasites and biotic disease in field and cultivated sea cucumbers. In: Lovatelli A (ed) Advances in sea cucumber aquaculture and management. pp 311–326. FAO Technical Paper, Roma

  • Gotto RV (1979) The association of copepods with marine invertebrates. Adv Mar Biol 16:1–109

    Article  Google Scholar 

  • Jangoux M (1984) Diseases of echinoderms. Helgoländer Meeresun 37:207–216. doi:10.1007/bf01989305

    Article  Google Scholar 

  • Jossart Q, David B, De Bruyn C, De Ridder C, Rigaud T, Wattier RA (2013) No evidence of host specialization in a parasitic pea-crab exploiting two echinoid hosts. Mar Ecol Prog Ser 475:167–176. doi:10.3354/meps10131

    Article  Google Scholar 

  • Kelly JF (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 78:1–27. doi:10.1139/cjz-78-1-1

    Article  Google Scholar 

  • Kornienko ES, Korn OM (2004) Morphological features of the larvae of spider crab Pugettia quadridens (decapoda: Majidae) from the northwestern sea of japan. Russ J Mar Biol 30:402–413. doi:10.1007/s11179-005-0027-4

    Article  Google Scholar 

  • Lee SY (1995) Cheliped size and structure: the evolution of a multi-functional decapod organ. J Exp Mar Biol Ecol 193:161–176. doi:10.1016/0022-0981(95)00116-6

    Article  Google Scholar 

  • Loc’h FL, Hily C (2005) Stable carbon and nitrogen isotope analysis of Nephrops norvegicus / Merluccius merluccius fishing grounds in the bay of biscay (northeast atlantic). Can J Fish Aquat Sci 62:123–132. doi:10.1139/f04-242

    Article  Google Scholar 

  • Mccutchan JH Jr, Lewis WM Jr, Kendall C, Mcgrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390

    Article  CAS  Google Scholar 

  • Ng PKL, Jeng MS (1999) The brachyuran crabs (crustacea: Decapoda: Eumedonidae and portunidae) symbiotic with echinoderms in taiwan. Zool Stud 38:268–274

    Google Scholar 

  • Parmentier E, Das K (2004) Commensal vs. Parasitic relationship between carapini fish and their hosts: some further insight through δ13C and δ15N measurements. J Exp Mar Biol Ecol 310:47–58. doi:10.1016/j.jembe.2004.03.019

    Article  CAS  Google Scholar 

  • Parmentier E, Michel L (2013) Boundary lines in symbiosis forms. Symbiosis 60:1–5. doi:10.1007/s13199-013-0236-0

    Article  Google Scholar 

  • Telford M (1982) Echinoderm spine structure, feeding and host relationships of four species of Dissodactylus (brachyura: Pinnotheridae). Bull Mar Sci 32:584–594

    Google Scholar 

  • Vaïtilingon D, Eeckhaut I, Fourgon D, Jangoux M (2004) Population dynamics, infestation and host selection of Vexilla vexillum, an ectoparasitic muricid of echinoids, in Madagascar. Dis Aquat Org 61:241–255. doi:10.3354/dao061241

    Article  PubMed  Google Scholar 

  • Vandenspiegel D, Ovaere A, Massin C (1992) On the association between the crab Hapalonotus reticulatus (Crustacea, Brachyura, Eumedonidae) and the sea cucumber Holothuria (Metriatyla) scabra (Echinodermata, Holothuridae). Bull K Belg Inst Nat Wet 62:167–177

    Google Scholar 

  • Vannini M, Innocenti G (2000) Research on the coast of Somalia. Portunidae (crustacea brachyura). Trop Zool 13:251–298. doi:10.1080/03946975.2000.10531136

    Article  Google Scholar 

  • Warner GF (1977) The biology of crabs. Elek Science, London, 202pp

    Google Scholar 

  • Westblad E (1949) On Meara stichopi (Bock) Westblad, a new representative of turbellaria archoophora. Ark Zool 1:43–54

    Google Scholar 

Download references

Acknowledgments

The authors kindly thank Dr. Claude Massin for holothuroids ossicles identification and Prof. David Richardson for improving the english of this manuscript. GC benefited from a Fonds National de la Recherche Scientifique (FRIA) grant and a FNRS travel grant. G.L. is Research Associate at FRS-FNRS. This work is a contribution of the CIBIM (University of Mons, Brussels, Liège (Belgium), the Polyaquaculture Research Unit (IH.SM, Toliara, Madagascar)) and the MARE center (University of Liège).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Caulier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caulier, G., Lepoint, G., Van Nedervelde, F. et al. The diet of the Harlequin crab Lissocarcinus orbicularis, an obligate symbiont of sea cucumbers (holothuroids) belonging to the genera Thelenota, Bohadschia and Holothuria . Symbiosis 62, 91–99 (2014). https://doi.org/10.1007/s13199-014-0274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-014-0274-2

Keywords

Navigation