Skip to main content
Log in

Breaking the language barrier: experimental evolution of non-native Vibrio fischeri in squid tailors luminescence to the host

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Although most Vibrio fischeri isolates are capable of symbiosis, the coevolution of certain strains with the Hawaiian bobtail squid, Euprymna scolopes, has led to specific adaptation to this partnership. For instance, strains from different hosts or from a planktonic environment are ineffective squid colonists. Even though bioluminescence is a symbiotic requirement, curiously, symbionts of E. scolopes are dim in culture relative to fish symbionts and free-living isolates. It is unclear whether this dim phenotype is related to the symbiosis or simply coincidental. To further explore the basis of symbiont specificity, we developed an experimental evolution model that utilizes the daily light organ venting behavior of the squid and horizontal acquisition of symbionts for serial passage of cultures. We passaged six populations each derived from the squid-naïve strains of V. fischeri MJ11 (a fish symbiont) and WH1 (a free-living isolate) through a series of juvenile squid light organs. After 15 serially colonized squid for each population, or an estimated 290–360 bacterial generations, we isolated representatives of the light organ populations and characterized their bioluminescence. Multiple evolved lines of both strains produced significantly less bioluminescence both in vitro and in vivo. This reduction in bioluminescence did not correlate with reduced quorum sensing for most isolates tested. The remarkable phenotypic convergence with squid symbionts further emphasizes the importance of bioluminescence in this symbiosis, and suggests that reduced light production is a specific adaptation to the squid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boettcher KJ, Ruby EG (1990) Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J Bacteriol 172:1053–1058

    Google Scholar 

  • Boettcher KJ, Ruby EG (1995) Detection and quantification of Vibrio fischeri autoinducer from symbiotic squid light organs. J Bacteriol 177:1053–1058

    PubMed  CAS  Google Scholar 

  • Boettcher KJ, Ruby EG, McFall-Ngai MJ (1996) Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J Comp Physiol 179:65–73

    Article  Google Scholar 

  • Bose JL, Kim U, Bartkowskik W, Gunsalus RP, Overley AM, Lyell NL, Visick KL, Stabb EV (2007) Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA. Mol Microbiol 65:538–553

    Article  PubMed  CAS  Google Scholar 

  • Bose JL, Rosenberg CS, Stabb EV (2008) Effects of luxCDABEG induction in Vibrio fischeri: enhancement of symbiotic colonization and conditional attenuation of growth in culture. Arch Microbiol 190:169–183

    Article  PubMed  CAS  Google Scholar 

  • Chao L, Hanley KA, Burch CL, Dahlberg C, Turner PE (2000) Kin selection and parasite evolution: higher and lower virulence with hard and soft selection. Q Rev Biol 75:261–275

    Article  PubMed  CAS  Google Scholar 

  • Cooper VS (2007) Experimental evolution of pathogens. In: Tibayrenc M (ed) Encyclopedia of infectious disease. Wiley, New York

    Google Scholar 

  • Davidson SK, Koropatnick TA, Kossmehl R, Sycuro L, McFall-Ngai MJ (2004) NO means ‘yes’ in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cell Microbiol 6:39–51

    Article  CAS  Google Scholar 

  • Ebert D (1998) Experimental evolution of parasites. Science 282:1432–1435

    Article  PubMed  CAS  Google Scholar 

  • Elena SF, Agudelo-Romero P, Carrasco P, Codoner FM, Martin S, Torres-Barcelo C, Sanjuan R (2008) Experimental evolution of plant RNA viruses. Heredity 100:478–483

    Article  PubMed  CAS  Google Scholar 

  • Fidopiastis PM, Miyamoto CM, Jobling MG, Meighen EA, Ruby EG (2002) LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol Microbiol 45:131–143

    Article  PubMed  CAS  Google Scholar 

  • Goodson MS, Kojadinovic M, Troll JV, Scheetz TE, Casavant TL, Soares MB, McFall-Ngai MJ (2005) Identifying components of the NF-kappaB pathway in the beneficial Eprymna scolopes-Vibrio fischeri light organ symbiosis. Appl Environ Microbiol 71:6934–6946

    Article  PubMed  CAS  Google Scholar 

  • Goodson MS, Crookes-Goodson WJ, Kimbell JR, McFall-Ngai MJ (2006) Characterization and role of p53 family members in the symbiont-induced morphogenesis of the Euprymna scolopes light organ. Biol Bull 211:7–17

    Article  PubMed  CAS  Google Scholar 

  • Graf J, Ruby EG (1998) Host-derived amino acids support the proliferation of symbiotic bacteria. Proc Natl Acad Sci USA 95:1818–1822

    Article  PubMed  CAS  Google Scholar 

  • Graf J, Dunlap PV, Ruby EG (1994) Effect of transponson-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J Bacteriol 176:6986–6991

    PubMed  CAS  Google Scholar 

  • Gray KM, Greenberg EP (1992) Physical and functional maps of the luminescence gene cluster in an autoinducer-deficient Vibrio fischeri strain isolated froma squd light organ. J Bacteriol 174:4384–4390

    PubMed  CAS  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford series in ecology and evolution Vol. 1. Oxford University Press, New York

    Google Scholar 

  • Hooper LV (2009) Do symbiotic bacteria subvert host immunity? Nat Rev Microbiol 7:367–374

    Article  PubMed  CAS  Google Scholar 

  • Jones BW, Nishiguchi MK (2004) Couterillumination in the Hawaiian bobtail squid, Euprymna scolopes (Mollusca: Cephalopoda). Mar Biol 144:1151–1155

    Article  Google Scholar 

  • Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ (2004) Microbial factor-mediated development in a host-bacterial mutualism. Science 306:1186–1188

    Article  PubMed  CAS  Google Scholar 

  • Lee KH (1994) Ecology of Vibrio fischeri, the light organ symbiont of the Hawaiian sepiolid squid Euprymna scolopes. PhD Dissertation, University of Southern California

  • Lee KH, Ruby E (1994a) Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl Envion Microbiol 60:1565–1571

    CAS  Google Scholar 

  • Lee KH, Ruby EG (1994b) Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis. J Bacteriol 176:1985–1991

    PubMed  CAS  Google Scholar 

  • Lenski RE (1991) Quantifying fitness and gene stability in microorganisms. Biotechnology. 15:173–92

    Google Scholar 

  • Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: a 10, 000-genration experiment with bacterial populations. Proc Natl Acad Sci USA 91:6808–6814

    Article  PubMed  CAS  Google Scholar 

  • Lupp C, Ruby EG (2005) Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J Bacteriol 187:3620–3629

    Article  PubMed  CAS  Google Scholar 

  • Lupp C, Urbanowski M, Greenberg EP, Ruby EG (2003) The AinS-derived acyl homoserine lactone of Vibrio fischeri is essential for normal luminescence and persistence in the squid host. Mol Microbiol 50:319–331

    Google Scholar 

  • Mandel MJ, Wollenberg MS, Stabb EV, Visick KL, Ruby EG (2009) A single regulatory gene is sufficient to alter symbiosis host range. Nature 458:215–218

    Article  PubMed  CAS  Google Scholar 

  • Mason KL, Huffnagle GB (2009) Control of mucosal polymicrobial populations by innate immunity. Cell Microbiol 11:1297–1305

    Article  PubMed  CAS  Google Scholar 

  • Millikan DS, Ruby EG (2004) Vibrio fischeri flagellin A is essential for normal motility and for symbiotic competence during initial squid light organ colonization. J Bacteriol 186:4315–4325

    Article  PubMed  CAS  Google Scholar 

  • Nilsson AI, Kugelberg E, Berg OG, Andersson DI (2004) Experimental adaptation of Salmonella typhimurium to mice. Genetics 168:1119–1130

    Article  PubMed  Google Scholar 

  • Nishiguchi MK (2002) Host-symbiont recognition in the environmentally transmitted sepiolid squid-Vibrio mutualism. Microb Ecol 44:10–18

    Article  PubMed  CAS  Google Scholar 

  • Nishiguchi MK, Ruby EG, McFall-Ngai MJ (1998) Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in sepiolid squid-Vibrio symbioses. Appl Environ Microbiol 64:3209–3213

    PubMed  CAS  Google Scholar 

  • Nyholm SV, McFall-Ngai MM (2003) Donimance of Vibrio fischeri in secreted mucus outside the light organ of Euprymna scolopes: the first site of symbiont specificity. Appl Environ Microbiol 69:3932–3937

    Article  PubMed  CAS  Google Scholar 

  • Nyholm SV, McFall-Ngai MJ (2004) The winnowing: establishing the squid-vibrio symbiosis. Nat Rev Microbiol 2:632–642

    Article  PubMed  CAS  Google Scholar 

  • Nyholm SV, Deplancke B, Gaskins HR, Apicella MA, McFall-Ngai MJ (2002) Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. Appl Environ Microbiol 68:5113–5122

    Article  PubMed  CAS  Google Scholar 

  • Nyholm SV, Stewart JJ, Ruby EG, McFall-Ngai MJ (2009) Recognition between symbiotic Vibrio fischeri and the hemocytes of Euprymna scolopes. Environ Microbiol 11:483–493

    Article  PubMed  Google Scholar 

  • Patsos G, Corfield A (2009) Management of the human mucosal defensive barrier: evidence for glycan legislation. Biol Chem 390:581–590

    Article  PubMed  CAS  Google Scholar 

  • Riley MS, Cooper VS, Lenski RE, Forney LJ, Marsh TL (2001) Rapid phenotypic change and diversification of a soil bacterium during 1000 generations of experimental evolution. Microbiol 147:995–1006

    CAS  Google Scholar 

  • Ruby EG (2008) Symbiotic conversations are revealed under genetic interrogation. Nat Rev Microbiol 6:752–762

    Article  PubMed  CAS  Google Scholar 

  • Ruby EG, Asato LM (1993) Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbioses. Arch Microbiol 159:160–167

    Article  PubMed  CAS  Google Scholar 

  • Ruby EG, McFall-Ngai MJ (1999) Oxygen-utilizing reactions and symbiotic colonization of the squid light organ by Vibrio fischeri. Trends Microbiol 10:414–420

    Article  Google Scholar 

  • Ruby EG, Nealson KH (1976) Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies. Biol Bull 151:574–586

    Article  PubMed  CAS  Google Scholar 

  • Ruby EG et al (2005) Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. PNAS 102:3004–3009

    Article  PubMed  CAS  Google Scholar 

  • Stabb EV (2005) Shedding light on the biolumiescence paradox. ASM News 71:223–229

    Google Scholar 

  • Stabb EV, Schaefer A, Bose J, Ruby EG (2007) Quorum signalling and symbiosis in the marine luminous bacterium Vibrio fischeri. In: Winans SC, Bassler B (eds) Chemical communication among bacteria. ASM, Washington, DC, pp 233–250

    Google Scholar 

  • Sycuro LK, Ruby EG, McFall-Ngai MJ (2006) Confocal microscopy of the light organ crypts in juvenile Euprymna scolopes reveals their morphological complexity and dynamic function in symbiosis. J Morphol 267:555–568

    Article  PubMed  Google Scholar 

  • Tong D, Rozas NS, Oakley TH, Mitchell J, Colley NJ, McFall-Ngai MJ (2009) Evidence for light perception in a bioluminescent organ. Proc Natl Acad Sci USA 106:9836–9841

    Article  PubMed  Google Scholar 

  • Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov. Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57:2823–2829

    Article  PubMed  CAS  Google Scholar 

  • Visick KL, McFall-Ngai MJ (2000) An exclusive contract: specificity in the Vibrio fischeri-Euprymna scolopes partnership. J Bacteriol 182:1779–1787

    Article  PubMed  CAS  Google Scholar 

  • Visick KL, Ruby EG (1998) The periplamic group III catalase of Vibrio fischeri is required for normal symbiotic competence and is induced both by oxidative stress and by approach to stationary phase. J Bacteriol 180:2087–2092

    PubMed  CAS  Google Scholar 

  • Visick KL, Skoufos LM (2001) Two-component sensor required for normal symbiotic colonization of Euprymna scolopes by Vibrio fischeri. J Bacteriol 183:835–842

    Article  PubMed  CAS  Google Scholar 

  • Visick KL, Foster J, Doino J, McFall-Ngai M, Ruby EG (2000) Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J Bacteriol 182:4578–4586

    Article  PubMed  CAS  Google Scholar 

  • Wollenberg MS, Ruby EG (2009) Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from two Oahu (Hawaii) populations. Appl Environ Microbiol 75:193–202

    Article  PubMed  CAS  Google Scholar 

  • Yip ES, Geszvain K, DeLoney-Marino CR, Visick KL (2006) The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol Microbiol 62:1586–1600

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Randi Desy, Anna Tyzik, and Rachel Donner for their assistance with culture evolution and in characterizing phenotypes of evolved strains, and Jenny Mahoney, Alicia Ballok, Michael Wollenberg, Karen Visick, and Spencer Nyholm for their helpful discussions on experimental design and analysis. This work was supported by a developmental grant from the New Hampshire Agricultural Experimentation Station NH00520 Hatch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl A. Whistler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, B.M., Perry, L.A., Cooper, V.S. et al. Breaking the language barrier: experimental evolution of non-native Vibrio fischeri in squid tailors luminescence to the host. Symbiosis 51, 85–96 (2010). https://doi.org/10.1007/s13199-010-0074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0074-2

Keywords

Navigation