Skip to main content
Log in

Tropical rainforests as dynamic symbiospheres of life

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The remote Tiputini-Yasuni tropical forest region of the northwest Amazon (eastern Ecuador) represents a rich biodiversity likely unsurpassed anywhere else on earth. The myriad ecosystems, habitats and organisms are embedded in layers of symbiotic expressions. This region and particularly its Tiputini Biodiversity Station operated by the Universidad San Francisco de Quito offer unique and significant opportunities for symbiosis research and needed habitat conservation support. The centrality of symbioses in tropical rainforests is discussed through a review of selected literature and based on recent first-hand field experiences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anthony PA, Holtum JAM, Jackes BR (2002) Shade acclimation of rainforest leaves to colonization by lichens. Funct Ecol 16(6):808–816

    Article  Google Scholar 

  • Aproot A (2001) Lichenized and saprobic fungal biodiversity of a single Elaeocarpus tree in Papua, New Guinea, with the report of 200 species of ascomycetes associated with one tree. Fungal Divers 6:1–11

    Google Scholar 

  • Aristizabel, C., Ribera, E.L., and Janos, D.P. 2004. Arbuscular mycorrhizae fungi colonizing decomposing leaves of Myrica parvifolia, M. pubescens, and Paepalanthus sp. Mycorrhiza 14(4): 221–228.

    Google Scholar 

  • Bass, M., Finer, M., Jenkins, C.N., Kreft, H., Cisneros-Heredia, D.F., McCracken, S., Pitman, N.C., English, P.H., Swing, K., Villa, G., DiFiore, A., Voigt, C.C., and Kunz, T. 2010. PLoS Biology, www.plosone.org 5:1 e8767.

  • Bentley BJ (1977) Extrafloral nectaries and protection by pugnacious bodyguards. Annu Rev Ecol Syst 8:407–427

    Article  CAS  Google Scholar 

  • Benzing DH (1998) Vulnerabilities of tropical forests to climate change: The significance of resident epiphytes. Climatic Change 39(2–3):519–540

    Article  Google Scholar 

  • Blüthgen N, Verhaugh M, Goitia W, Morawetz KJW, Barthlott W (2000) How plants shape the ant community in the Amazonian rainforest canopy: The key role of extrafloral nectaries and Homopteran honeydew. Oecologia 125(2):229–240

    Article  Google Scholar 

  • Blüthgen N, Fiedler K (2004) Competition for composition: Lessons from nectar-feeding ant communities. Ecology 85(8):1479–1485

    Article  Google Scholar 

  • Bourguignon T, Sobotnik J, Lepoint G, Martin JM, Roisin Y (2009) Niche differentiation among neotropical soldierless soil-feeding termites as revealed by stable isotope ratios. Soil Biol Biochem 41:2038–2043

    Article  CAS  Google Scholar 

  • Brauman A, Kane MD, Labat M, Breznak J (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1388

    Article  PubMed  CAS  Google Scholar 

  • Breznak J (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36:323–343

    Article  PubMed  CAS  Google Scholar 

  • Burnham RJ, Johnson KR (2004) South American paleobotany and the origins of neotropical forests. Philos Trans Biol Sci 359(1450):1595–1610

    Article  Google Scholar 

  • Bush MB (2000) Ecology of a Changing Planet, 2nd edn. New Jersey, Prentice-Hall

    Google Scholar 

  • Cafaro MJ, Currie C (2005) Phylogenic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol 51(6):441–446

    Article  PubMed  CAS  Google Scholar 

  • Carpenter EJ (1992) Nitrogen fixation in the epiphyllae and root nodules of trees in the lowland tropical rainforest of Costa Rica. ACTA Oecologica Int J Ecol 13(2):153–160

    Google Scholar 

  • Cherrett JM (1972) Some factors involved in the selection of vegetable substrate by Atta cephalotes (L.) (Hymenoptera: Formicidae) in tropical rainforest. J Anim Ecol 41(3):647–660

    Article  Google Scholar 

  • Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ (2007) Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001

    Article  PubMed  CAS  Google Scholar 

  • Currie C (2001) A community of ants, fungi, and bacteria: A multilateral approach to studying symbiosis. Annu Rev Microbiol 55:357–380

    Article  PubMed  CAS  Google Scholar 

  • Dejean A, Solano PJ, Ayroles J, Corbara B, Orivel J (2005) Arboreal ants build traps to capture prey. Nature 434:972

    Article  CAS  Google Scholar 

  • Defossez, E., Selosse, M.A., Dubois, M.P., Mondolot, l., Faccio, A., Dileto-Lordon, C., McKey, D., and Blatrix, R. 2009. New Phytologist 182: 942–949.

  • Diaye DN, Duponnois R, Braumann A, Lepage M (2003) Impact of a soil feeding termite. Cubitermes niokoloensis on the symbiotic microflora associated with a fallow leguminous plant Crotalaria ochroleuca. Biol Fertil Soils 37:313–318

    Google Scholar 

  • Dixon RK (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Bello MG, Michelangeli F, Ruiz MC, Garcia A, Rodriguez E (1994) Ecology of the folivorous hoatzin (Opisthocomus hoazin on the Venezuelan plains. The Auk 111(3):643–651

    Google Scholar 

  • Donovan SE, Eggleton P, Dubbin WE, Batchelder M, Dubog L (2001) The effect of a soil-feeding termite, Cubitermes fungifaber (Isoptera: Termitidae) on soil properties: termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologica 45:1–11

    Article  Google Scholar 

  • Edwards DP, Frederickson ME, Shepard GH, Yu DW (2009) Natural history note: A plant needs ants like a dog needs fleas: Mymelachista schumanni ants gall many tree species to create housing. Am Nat 175(5):734–740

    Article  Google Scholar 

  • Eilmus S, Heil M (2009) Bacterial associates of arboreal ants and their putative functions in an obligate ant-plant mutualism. Appl Environ Microbiol 75(13):4324–4332

    Article  PubMed  CAS  Google Scholar 

  • Fiala B, Linsenmair KE (2004) Distribution and abundance of plants with extrafloral nectaries in the woody flora of as lowland primary forest in Malaysia. Biodivers Conserv 4(2):165–182

    Article  Google Scholar 

  • Finer, M., Vijay, V., Ponce, F., Jenkins, C.N., and Kahn, T.R. 2009. Ecuador’s Yasuni biosphere reserve: a brief modern history and conservation challenges. Environmental Research Letters 4(3)

  • Frederickson ME, Gordon DM (2007) Devil to pay: accost of mutualism with Myrmelachista schumanni ants in “devils’ gardens” is increased herbivory on Duroia hirsuta trees. Proc R Soc B 274:1117–1123

    Article  PubMed  Google Scholar 

  • Frederickson ME, Gordon DM (2009) The intertwined population biology of two Amazonian myrmecophytes and their symbiotic ants. Ecology 90(6):1595–1607

    Article  PubMed  Google Scholar 

  • Frederickson ME, Greene MJ, Gordon DM (2005) “Devil’s Gardens” bedeviled by ants. Nature 437:495–496

    Article  PubMed  CAS  Google Scholar 

  • Freiberg M, Freiberg E (2000) Epiphyte diversity and biomass in the canopy of lowland and montane forests of Ecuador. J Trop Biol 16(5):673–688

    Article  Google Scholar 

  • Forman RTT (1975) Canopy lichens with blue-green algae: A nitrogen source in a Colombian rainforest. Ecology 56:1176–1184

    Article  Google Scholar 

  • Freymann BP, Buitenwerf R, Desouza O, Olff H (2008) The importance of termites (Isoptera) for the recycling of herbivore dung in tropical ecosystems: a review. Eur J Entomol 105:165–173

    Google Scholar 

  • Godoy-Vitorino F, Ley RE, Gao Z, Pei Z, Ortiz-Zuazaga H, Pericchi LR, Garcia-Amado MA, Michelangeli F, Blaser MJ, Gordon JI, Dominguez-Bello MG (2008) Bacterial community in the crop of the hoatzin, a neotropical folivorous flying bird. Appl Environ Microbiol 74:5905–5912

    Article  PubMed  CAS  Google Scholar 

  • Grajal A (1995) Structure and function of the digestive tract of the hoatzin (Opisthocomus hoazin): A folivorous bird with foregut fermentation. The Auk 122(1):20–28

    Google Scholar 

  • Harrison RD (2003) Fig wasp dispersal and the stability of a keystone plant resource in Borneo. Proc Biol Soc 270(supplement):s76–s79

    Article  Google Scholar 

  • Harrison RD (2005) Figs and the diversity of tropical rainforests. Bioscience 55(12):1053–1064

    Article  Google Scholar 

  • Hauck M (2009) Global warming and alternative causes of decline in arctic-alpine and boreal-montane lichens in northwestern Central Europe. Glob Change Biol 15(11):2653–2661

    Article  Google Scholar 

  • Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–635

    Article  Google Scholar 

  • Herre EA, Charlotte Handér K, Machado CA (2008) Evolutionary ecology of figs and their associates: Recent progress and outstanding puzzles. Annu Rev Ecol Sys 39:439–458

    Article  Google Scholar 

  • Husband R, Herre EA, Turner SL, Gallery R, Young PW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    Article  PubMed  CAS  Google Scholar 

  • Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12(2):55–64

    Article  Google Scholar 

  • Janos DP (1987) Tropical mycorrhizas, nutrient cycles, and plant growth. In: Sutton EL, Whitmore TC, Chadwick AC (eds) Tropical Rainforest: Ecology and Management. Blackwell Scientific, Oxford, pp 317–345

    Google Scholar 

  • Janos DP (1993) Vesicular-Arbuscular mycorrhizae of epiphytes. Mycorrhiza 4(1):1–4

    Article  Google Scholar 

  • Janos DP, Sahley CT, Emmons LH (1995) Rodent dispersal of vesicular-arbuscular mycorrhizal fungi in Amazonian Peru. Ecology 76(6):1852–1858

    Article  Google Scholar 

  • Janzen DH (1979) How to be a fig. Annu Rev Ecol Syst 10:13–51

    Article  Google Scholar 

  • Kaufmann S, McKey DB, Hossaert-McKey M, Horvitz CC (1991) Adaptations for a Two-Phase seed dispersal system involving vertebrates and ants in a hemi-epiphytic fig (Ficus microcarpa, Moraceae). Am J Bot 78(7):971–977

    Article  Google Scholar 

  • Keeler KH (1977) The extrafloral nectaries of Ipomoea carnea (Convolvulaceae). Am J Bot 64(10):1182–1188

    Article  Google Scholar 

  • Kreft H, Koster N, Kuper W, Nieder J, Barthlott W (2004) Diversity and biogeography of vascular epiphytes in western Amazonia, Yasuni, Ecuador. Jourmal Biogeogr 31(9):1463–1476

    Article  Google Scholar 

  • Lakatos M, Lange-Bertalot H, Budel B (2004) Diatoms living inside the thallus of the green algal lichen Coenogonium linkii in neotropical lowland rainforests. J Phycol 40(1):70–73

    Article  Google Scholar 

  • Langley JA, Hungate B (2003) Mycorrhizal controls on belowground litter quality. Ecology 84(9):2302–2312

    Article  Google Scholar 

  • Lattman H, Milberg P, Palmer MW, Mattsson JE (2009) Changes in the distributions of epiphytic lichens in southern Sweden using a new statistical method. Nord J Bot 27(5):413–418

    Article  Google Scholar 

  • Lesica P, Antibus RK (1990) The occurrence of mycorrhizae in vascular epiphytes of two Costa Rican rainforests. Biotropica 22(3):250–258

    Article  Google Scholar 

  • Libralato S, Christiensen V, Pauly D (2006) A method for identifying keystone species in food web models. Ecol Model 195(3–4):153–171

    Article  Google Scholar 

  • Little AE, Currie CR (2007) Symbiotic complexity: discovery of a fifth symbiont in the attine ant-microbe symbiosis. Biol Lett 3:501–4

    Article  PubMed  Google Scholar 

  • Little AE, Currie CR (2008) Indirect interaction web reveals how black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89:1216–1222

    Article  PubMed  Google Scholar 

  • Lovelock CE, Wright SE, Clark DA, Ruess RW (2004) Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical forest landscape. J Ecol 92:278–287

    Article  CAS  Google Scholar 

  • Lucking R, Matzer M (2001) High folicolous lichen alpha-diversity on individual leaves in Costa Rica and Amazonian Ecuador. Biodivers Conserv 10(12):2139–2152

    Article  Google Scholar 

  • Malhi Y, Roberts T, Betts R, Killeen T, Li W (2009) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172

    Article  CAS  Google Scholar 

  • Mandl, N., Lehnert, M., Kessler, M., and Gradstein, S.R. 2010. A comparison of alpha and beta diversity patterns of ferns, bryophytes, and macrolichens in tropical montane forests of southern Ecuador. Biodiversity Conservation 1572–9710 (Online), doi:10.1007/s10531-010-9839-4.

  • McKey D (1994) Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. In: Sprent JL, McKey D (eds) Advances in Legume Systematics: Part 5—The Nitrogen Factor. Royal Botanic Gardens, Kew, England, pp 211–228

    Google Scholar 

  • Moreira FMS, Haukka K, Young JPW (1998) Biodiversity of Rhizobia isolated from a wide range of legumes in Brazil. Mol Ecol 7:889–895

    Article  PubMed  CAS  Google Scholar 

  • Moutinho P, Nepstad DC, Davidson EA (2003) Influence of leaf-cutting ant nests on secondary forest growth and soil properties of Amazonia. Ecology 84(5):1265–1276

    Article  Google Scholar 

  • Onguene NA, Kuyper TW (2001) Mycorrhizal associations in the rainforest of South Cameroon. For Ecol Manage 140(2–3):277–287

    Article  Google Scholar 

  • Opik M, Moora, Zobel M, Saks U, Wheatley R, Wright F, Daniell T (2008) High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich forest. New Phytol 179:867–876

    Article  PubMed  CAS  Google Scholar 

  • Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019

    Article  PubMed  CAS  Google Scholar 

  • Pinoklyo A, Singh KP, Singh JS (2006) Leaf-colonizing lichens: their diversity, ecology, and future prospects. Curr Sci 90(4):509–518

    Google Scholar 

  • Pitman NCA, Terborgh JW, Silman MR, Núñez PV, Neill DA, Cerón CE, Palacios WA, Aulestia M (2001) Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82(8):2101–2117

    Article  Google Scholar 

  • Pons TL, Perreijn K, van Kessel C, Werger MJA (2007) Symbiotic nitrogen fixation in a tropical rainforest: 15N natural abundance measurements supported by experimental isotopic enrichment. New Phytol 173:154–167

    Article  PubMed  CAS  Google Scholar 

  • Porras-Alfaro A, Bayman P (2007) Mycorrhizal fungi of Vanilla: diversity, specificity, and effects on seed germination and plant growth. Mycologia 99(4):510–525

    Article  PubMed  CAS  Google Scholar 

  • Powell C (1980) Mycorrhizal infectivity of eroded soils. Soil Biol Biochem 12:247–250

    Article  Google Scholar 

  • Reddell P, Spain AV, Hopkins M (1997) Dispersal of spores of mycorrhizal fungi in scats of native mammals in tropical forests of northern Australia. Biotropica 29(2):184–192

    Article  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2008) Tree species control rates of free-living nitrogen fixation in a tropical rainforest. Ecology 89(10):2924–2934

    Article  PubMed  Google Scholar 

  • Rex K, Kelm DH, Detlev H, Weisner K, Kunz TH, Voigt CC (2008) Species richness and structure of three neotropical bat assemblages. Biol J Linn Soc 94(3):617–629

    Article  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forests. Plant Soil 233(2):167–177

    Article  CAS  Google Scholar 

  • Seaward MRD (1988) Contributions of lichens to ecosystems. In: Galun M (ed) CRC Handbook of Lichenology, volume 2. CRC Press, Florida, pp 107–129

    Google Scholar 

  • Shanahan M, Samson SO, Compton SG, Corlett R (2001) Fig-eating by vertebrate frugivores: A global review. Biol Rev 76:529–572

    PubMed  CAS  Google Scholar 

  • Smith N, Mori SA, Henderson A, Stevenson DW, Heald SV (2004) Flowering Plants of the Neotropics. Princeton University Press, New Jersey, p xviii

    Google Scholar 

  • Solano PJ, Dejean A (2004) Ant-fed plants: comparison between three geophytic myrmecophytes. Biol J Linn Soc 83:433–439

    Article  Google Scholar 

  • Stark NM, Jordan CF (1978) Nutrient retention by the root mat of an Amazonian rainforest. Ecology 59(3):434–437

    Article  CAS  Google Scholar 

  • Stephenson AG (1982) The role of the extrafloral nectaries of Catalpa speciosa in limiting herbivory and increasing fruit production. Ecology 63(3):663–669

    Article  Google Scholar 

  • Valencia R, Condit R, Foster RB, Romoleroux K, Villa Munoz G (2004) Yasunı´ Forest Dynamics Plot, Ecuador. In: Losos EC, Leigh EG Jr (eds) Tropical forest diversity and dynamism: Findings from a large-scale plot network. University of Chicago Press, Chicago, pp 609–620

    Google Scholar 

  • Vasconcelos HL, Cherrett JM (1997) Leaf-cutting ants and early forest regeneration in Central Amazonia: Effects of herbivory on tree seedling establishment. J Trop Ecol 13(3):357–370

    Article  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NN, Howarth RW, Marino R, Martinelli L, Rastetter EN, Sprent J (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57(58):1–45

    Article  Google Scholar 

  • Weiblen GD (2002) How to be a fig wasp. Annu Rev Entomol 47:299–330

    Article  PubMed  CAS  Google Scholar 

  • Wilke Ryder KT, Mertl AL, Traniello JFA (2007) Biodiversity below ground:Probing the subterranean ant fauna of Amazonia. Naturwissenschaften 94:725–731

    Article  CAS  Google Scholar 

  • Wojciechowski MF, Lavin M, Sanderson ML (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am J Bot 91:1846

    Article  CAS  Google Scholar 

  • Yu DW, Davidson DW (1997) Experimental studies of species specificity in Cecropia-ant relationships. Ecol Monogr 67(3):273–294

    Google Scholar 

  • Zhang MM, Poulsen M, Currie C (2007) Symbiont recognition of mutualistic bacteria by Acromyrex leaf-cutting ants. ISME J 1:313–320

    PubMed  Google Scholar 

  • Zook DP (2001) Prioritizing symbiosis to sustain biodiversity: Are symbionts keystone species? In: Seckbach J (ed) Symbiotic Mechanisms. Kluwer, Dordrecht, pp 3–12

    Google Scholar 

Download references

Acknowledgements

Special appreciation goes to Boston University Science Education graduate student Devon O’Rourke and Darwin Zook in helping to prepare this article; to Universidad San Francisco de Quito Tiputini Biodiversity Station staff and leadership including for their on-site conservation dedication; and to the Boston University School of Education, particularly Dr. Stephen Ellenwood, Chair of Curriculum and Teaching and the Faculty Travel Grant Committee for generous support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Zook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zook, D. Tropical rainforests as dynamic symbiospheres of life. Symbiosis 51, 27–36 (2010). https://doi.org/10.1007/s13199-010-0071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0071-5

Keywords

Navigation