Skip to main content
Log in

Use of response surface methodology (RSM) to optimize pea starch–chitosan novel edible film formulation

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to develop an optimal formulation for preparation of edible films from chitosan, pea starch and glycerol using response surface methodology. Three independent variables were assigned comprising chitosan (1–2%), pea starch (0.5–1.5%) and glycerol (0.5–1%) to design an empirical model best fit in physical, mechanical and barrier attributes. Impacts of independent variables on thickness, moisture content, solubility, tensile strength, elastic modulus, elongation at break and water vapor permeability of films were evaluated. All the parameters were found to have significant effects on physical and mechanical properties of film. The optimal formulation for preparation of edible film from chitosan, pea starch and glycerol was 1% chitosan, 1.5% pea starch and 0.5% glycerol. Edible films with good physical and mechanical properties can be prepared with this formulation and thus this formulation can be further applied for testing on coating for fruit and vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnon H, Zaitsev Y, Porat R, Poverenov E (2014) Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biol Technol 87:21–26. doi:10.1016/j.postharvbio.2013.08.007

    Article  CAS  Google Scholar 

  • ASTM (1996) Standard test method for water vapor transmission of materials, method E96/E96M e 13. American Society for Testing and Materials, Phialdelphia

    Google Scholar 

  • Bof MJ, Bordagaray VC, Locaso DE, García MA (2015) Chitosan molecular weight effect on starch-composite film properties. Food Hydrocolloids 51:281–294. doi:10.1016/j.foodhyd.2015.05.018

    Article  CAS  Google Scholar 

  • Bonilla J, Atarés L, Vargas M, Chiralt A (2013) Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. J Food Eng 114:303–312. doi:10.1016/j.jfoodeng.2012.08.005

    Article  CAS  Google Scholar 

  • Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch–chitosan blend biodegradable film LWT—Food. Sci Technol 41:1633–1641. doi:10.1016/j.lwt.2007.10.014

    CAS  Google Scholar 

  • Cerqueira MA, Souza BWS, Teixeira JA, Vicente AA (2012) Effect of glycerol and corn oil on physicochemical properties of polysaccharide films—a comparative study. Food Hydrocolloids 27:175–184. doi:10.1016/j.foodhyd.2011.07.007

    Article  CAS  Google Scholar 

  • Chillo S, Flores S, Mastromatteo M, Conte A, Gerschenson L, Del Nobile M (2008) Influence of glycerol and chitosan on tapioca starch-based edible film properties. J Food Eng 88:159–168

    Article  CAS  Google Scholar 

  • Chinma CE, Ariahu CC, Alakali JS (2015) Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films. J Food Sci Technol 52:2380–2386. doi:10.1007/s13197-013-1227-0

    Article  CAS  Google Scholar 

  • Dailey A, Vuong Q (2016) Optimum conditions for microwave assisted extraction for recovery of phenolic compounds and antioxidant capacity from macadamia (Macadamia tetraphylla) skin waste using water. Processes 4:2

    Article  Google Scholar 

  • Dhall RK (2013) Advances in edible coatings for fresh fruits and vegetables: a review. Crit Rev Food Sci Nutr 53:435–450. doi:10.1080/10408398.2010.541568

    Article  CAS  Google Scholar 

  • Gómez-Estaca JG, Giménez B, Montero P, Gómez-Guillén MC (2009) Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. J Food Eng 92:78–85. doi:10.1016/j.jfoodeng.2008.10.024

    Article  Google Scholar 

  • Hilbert G, Macmasters M (1945) Pea starch: a starch with high amylose content. J Biol Chem 38:229

    Google Scholar 

  • Kanmani P, Lim ST (2013) Development and characterization of novel probiotic-residing pullulan/starch edible films. Food Chem 141:1041–1049. doi:10.1016/j.foodchem.2013.03.103

    Article  CAS  Google Scholar 

  • Ma X, Chang PR, Yu J (2008) Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydr Polym 72:369–375. doi:10.1016/j.carbpol.2007.09.002

    Article  CAS  Google Scholar 

  • Maciel VBV, Yoshida CMP, Franco TT (2014) Development of temperature indicator prototype: cardpaper coated with chitosan intelligent films. J Agric Chem Environ 03:5–10. doi:10.4236/jacen.2014.31B002

    Google Scholar 

  • Maran JP, Sivakumar V, Sridhar R, Thirugnanasambandham K (2013a) Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydr Polym 92:1335–1347. doi:10.1016/j.carbpol.2012.09.069

    Article  CAS  Google Scholar 

  • Maran JP, Sivakumar V, Sridhar R, Thirugnanasambandham K (2013b) Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydr Polym 92:1335–1347. doi:10.1016/j.carbpol.2012.09.069

    Article  CAS  Google Scholar 

  • McHugh TH, Avena-Bustillos R, Krochta J (1993) Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. J Food Sci 58:899–903

    Article  CAS  Google Scholar 

  • Mehyar G, Han J (2004) Physical and mechanical properties of high-amylose rice and pea starch films as affected by relative humidity and plasticizer. J Food Sci 69:E449–E454

    Article  CAS  Google Scholar 

  • Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH (2010) Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem 122:161–166. doi:10.1016/j.foodchem.2010.02.033

    Article  CAS  Google Scholar 

  • Pelissari FM, Grossmann MVE, Yamashita F, Pineda EAG (2009) Antimicrobial, mechanical, and barrier properties of cassava starch–chitosan films incorporated with oregano essential oil. J Agric Food Chem 57:7499–7504. doi:10.1021/jf9002363

    Article  CAS  Google Scholar 

  • Ratnayake WS, Hoover R, Warkentin T (2002) Pea starch: composition, structure and properties—a review. Starch-Stärke 54:217–234. doi:10.1002/1521-379X(200206)54:6<217:AID-STAR217>3.0.CO;2-R

    Article  CAS  Google Scholar 

  • Saberi B, Vuong Q, Chockchaisawasdee S, Golding J, Scarlett C, Stathopoulos C (2015) Mechanical and physical properties of pea starch edible films in the presence of glycerol. J Food Process Preserv. doi:10.1111/jfpp.12719

    Google Scholar 

  • Saberi B, Vuong Q, Chockchaisawasdee S, Golding J, Scarlett C, Stathopoulos C (2016) Water sorption isotherm of pea starch edible films and prediction models. Foods 5:1

    Article  Google Scholar 

  • Sánchez-González L, González-Martínez C, Chiralt A, Cháfer M (2010) Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. J Food Eng 98:443–452. doi:10.1016/j.jfoodeng.2010.01.026

    Article  Google Scholar 

  • Santacruz S, Rivadeneira C, Castro M (2015) Edible films based on starch and chitosan: effect of starch source and concentration, plasticizer, surfactant’s hydrophobic tail and mechanical treatment. Food Hydrocolloids 49:89–94. doi:10.1016/j.foodhyd.2015.03.019

    Article  CAS  Google Scholar 

  • Sanyang M, Sapuan S, Jawaid M, Ishak M, Sahari J (2015a) Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers 7:1106

    Article  CAS  Google Scholar 

  • Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2015b) Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. J Food Sci Technol 53:326–336. doi:10.1007/s13197-015-2009-7

    Article  Google Scholar 

  • Singh N, Belton PS, Georget DMR (2009) The effects of iodine on kidney bean starch: films and pasting properties. Int J Biol Macromol 45:116–119. doi:10.1016/j.ijbiomac.2009.04.006

    Article  CAS  Google Scholar 

  • Valencia-Chamorro SA, Perez-Gago MB, Del Rio MA, Palou L (2010) Effect of antifungal hydroxypropyl methylcellulose-lipid edible composite coatings on Penicillium decay development and postharvest quality of cold-stored “Ortanique” mandarins. J Food Sci 75:S418–S426. doi:10.1111/j.1750-3841.2010.01801.x

    Article  CAS  Google Scholar 

  • van den Broek LA, Knoop RJ, Kappen FH, Boeriu CG (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242. doi:10.1016/j.carbpol.2014.07.039

    Article  Google Scholar 

  • Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crops Prod 21:185–192. doi:10.1016/j.indcrop.2004.03.002

    Article  CAS  Google Scholar 

  • Zhai M, Zhao L, Yoshii F, Kume T (2004) Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydr Polym 57:83–88. doi:10.1016/j.carbpol.2004.04.003

    Article  CAS  Google Scholar 

  • Zhang L, Li R, Dong F, Tian A, Li Z, Dai Y (2015) Physical, mechanical and antimicrobial properties of starch films incorporated with epsilon-poly-l-lysine. Food Chem 166:107–114. doi:10.1016/j.foodchem.2014.06.008

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the University of Newcastle, Australian Research Council (ARC) Training Centre for Food and Beverage Supply Chain and Optimisation (IC140100032). NSW Department of Primary Industries is a partner organisation in the Training Centre.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahul Thakur or Quan V. Vuong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, R., Saberi, B., Pristijono, P. et al. Use of response surface methodology (RSM) to optimize pea starch–chitosan novel edible film formulation. J Food Sci Technol 54, 2270–2278 (2017). https://doi.org/10.1007/s13197-017-2664-y

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2664-y

Keywords

Navigation