Skip to main content

Advertisement

Log in

Bioaccessibility of hydroxytyrosol and n-3 fatty acids as affected by the delivery system: simple, double and gelled double emulsions

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

This study examines the influence of different food-grade n-3 PUFA-enriched simple emulsion (SE), double emulsion (DE) and gelled double emulsion (GDE) delivery systems on the extent of lipolysis, antioxidant capacity and the bioaccessibility of hydroxytyrosol (HTy). GDE emulsion offered better protection for HTy (89%) than the other systems (79% in SE and DE). The reducing capacity of the emulsions containing HTy were not altered during oral digestion. However, “in vitro” gastric and intestinal phases significantly reduced the antioxidant activity of all systems. The structural and physical state of GDE entailed a slowing-down of triacylglyceride hydrolysis (36.4%) in comparison with that of SE and DE (22.7 and 24.8% for SE and DE, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahn J, Grun IU, Fernando LN (2002) Antioxidant properties of natural plant extracts containing polyphenolic compounds in cooked ground beef. J Food Sci 67:1364–1369. doi:10.1111/j.1365-2621.2002.tb10290.x

    Article  CAS  Google Scholar 

  • Arroyo R, Sánchez-Muniz FJ, Cuesta C, Burguillo FJ, Sánchez-Montero JM (1996) Hydrolysis of used frying palm olein and sunflower oil catalyzed by porcine pancreatic lipase. Lipids 31:1133–1139. doi:10.1007/bf02524287

    Article  CAS  Google Scholar 

  • Cofrades S, Antoniou I, Solas MT, Herrero AM, Jiménez-Colmenero F (2013) Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems. Food Chem 141:338–346. doi:10.1016/j.foodchem.2013.02.097

    Article  CAS  Google Scholar 

  • De Leonardis A, Aretini A, Alfano G, Macciola V, Ranalli G (2008) Isolation of a hydroxytyrosol-rich extract from olive leaves (Olea Europaea L.) and evaluation of its antioxidant properties and bioactivity. Eur Food Res Technol 226:653–659. doi:10.1007/s00217-007-0574-3

    Article  CAS  Google Scholar 

  • DeJong S, Lanari MC (2009) Extracts of olive polyphenols improve lipid stability in cooked beef and pork: contribution of individual phenolics to the antioxidant activity of the extract. Food Chem 116:892–897. doi:10.1016/j.foodchem.2009.03.053

    Article  CAS  Google Scholar 

  • Dobarganes MC, Velasco J, Dieffenbacher A (2000) Determination of polar compounds, polymerized and oxidized triacylglycerols, and diacylglycerols in oils and fats: results of collaborative studies and the standardized method (Technical report). Pure Appl Chem 72:1563. doi:10.1351/pac200072081563

    Article  CAS  Google Scholar 

  • Fki I, Allouche N, Sayadi S (2005) The use of polyphenolic extract, purified hydroxytyrosol and 3,4-dihydroxyphenyl acetic acid from olive mill wastewater for the stabilization of refined oils: a potential alternative to synthetic antioxidants. Food Chem 93:197–204. doi:10.1016/j.foodchem.2004.09.014

    Article  CAS  Google Scholar 

  • Flaiz L, Freire M, Cofrades S, Mateos R, Weiss J, Jimenez-Colmenero F, Bou R (2016) Comparison of simple, double and gelled double emulsions as hydroxytyrosol and n-3 fatty acid delivery systems. Food Chem 213:49–57. doi:10.1016/j.foodchem.2016.06.005

    Article  CAS  Google Scholar 

  • Garti N (1997) Double emulsions—scope, limitations and new achievements. Colloid Surf A 123–124:233–246. doi:10.1016/S0927-7757(96)03809-5

    Article  Google Scholar 

  • Gómez-Guillén MC, Giménez B, Lopez-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827. doi:10.1016/j.foodhyd.2011.02.007

    Article  Google Scholar 

  • Gonzalez-Santiago M et al (2006) One-month administration of hydroxytyrosol, a phenolic antioxidant present in olive oil, to hyperlipemic rabbits improves blood lipid profile, antioxidant status and reduces atherosclerosis development. Atherosclerosis 188:35–42. doi:10.1016/j.atherosclerosis.2005.10.022

    Article  CAS  Google Scholar 

  • Guo Q, Ye A, Lad M, Dalgleish D, Singh H (2014) Effect of gel structure on the gastric digestion of whey protein emulsion gels. Soft Matter 10:1214–1223. doi:10.1039/c3sm52758a

    Article  CAS  Google Scholar 

  • Jiménez-Colmenero F (2013) Potential applications of multiple emulsions in the development of healthy and functional foods. Food Res Int 52:64–74. doi:10.1016/j.foodres.2013.02.040

    Article  Google Scholar 

  • Jiménez-Colmenero F, Salcedo-Sandoval L, Bou R, Cofrades S, Herrero AM, Ruiz-Capillas C (2015) Novel applications of oil-structuring methods as a strategy to improve the fat content of meat products. Trends Food Sci Technol 44:177–188

    Article  Google Scholar 

  • Jo H, Kim M, Lee J, Kim H, Song YO (2013) Anti-atherogenic properties of emulsified perilla oil (EPO) in apo E KO mice and plasma lipid lowering effects of rice porridge containing EPO in healthy young adults. Food Sci Biotechnol 22:79–85. doi:10.1007/s10068-013-0011-2

    Article  CAS  Google Scholar 

  • Li J, Cheng Y, Tatsumi E, Saito M, Yin L (2014) The use of W/O/W controlled-release coagulants to improve the quality of bittern-solidified tofu. Food Hydrocoll 35:627–635. doi:10.1016/j.foodhyd.2013.08.002

    Article  CAS  Google Scholar 

  • Lindblad BS (1988) Perinatal nutrition. Academic Press Inc., Orlando

    Google Scholar 

  • Lobato-Calleros C, Sosa-Pérez A, Rodríguez-Tafoya J, Sandoval-Castilla O, Pérez-Alonso C, Vernon-Carter EJ (2008) Structural and textural characteristics of reduced-fat cheese-like products made from W1/O/W2 emulsions and skim milk. LWT-Food Sci Technol 41:1847–1856. doi:10.1016/j.lwt.2008.01.006

    Article  CAS  Google Scholar 

  • Mao L, Miao S (2015) Structuring food emulsions to improve nutrient delivery during digestion. Food Eng Rev 7:439–451. doi:10.1007/s12393-015-9108-0

    Article  CAS  Google Scholar 

  • Marze S (2013) Bioaccessibility of nutrients and micronutrients from dispersed food systems: impact of the multiscale bulk and interfacial structures. Crit Rev Food Sci Nutr 53:76–108. doi:10.1080/10408398.2010.525331

    Article  CAS  Google Scholar 

  • McClements DJ, Decker EA (2000) Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems. J Food Sci 65:1270–1282. doi:10.1111/j.1365-2621.2000.tb10596.x

    Article  CAS  Google Scholar 

  • McClements DJ, Li Y (2010) Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interf Sci 159:213–228. doi:10.1016/j.cis.2010.06.010

    Article  CAS  Google Scholar 

  • Minekus M et al (2014) A standardised static in vitro digestion method suitable for food—an international consensus. Food Funct 5:1113–1124

    Article  CAS  Google Scholar 

  • Olivero-David R et al (2011) Effect of thermally oxidized oil and fasting status on the short-term digestibility of ketolinoleic acids and total oxidized fatty acids in rats. J Agric Food Chem 59:4684–4691. doi:10.1021/jf1048063

    Article  CAS  Google Scholar 

  • Pazos M, Alonso A, Sanchez I, Medina I (2008) Hydroxytyrosol prevents oxidative deterioration in foodstuffs rich in fish lipids. J Agric Food Chem 56:3334–3340

    Article  CAS  Google Scholar 

  • Pereira-Caro G, Sarriá B, Madrona A, Espartero JL, Escuderos ME, Bravo L, Mateos R (2012) Digestive stability of hydroxytyrosol, hydroxytyrosyl acetate and alkyl hydroxytyrosyl ethers. Int J Food Sci Nutr 63:703–707. doi:10.3109/09637486.2011.652943

    Article  CAS  Google Scholar 

  • Porter CJH, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6:231–248

    Article  CAS  Google Scholar 

  • Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402

    Article  CAS  Google Scholar 

  • Sánchez-Muniz FJ, Benedí J, Bastida S, Olivero-David R, Gonzalez-Muñoz MJ (2011) Enzymes and thermally oxidized oils and fats. In: Boskou D, Elmadfa I (eds) Frying of foods: oxidation, nutrient and non-nutrient antioxidants, biologically active compounds and high temperatures. CRC Press, Taylor and Francis group LLC, Boca Raton, pp 105–155

    Google Scholar 

  • Wang Z, Neves MA, Kobayashi I, Uemura K, Nakajima M (2013) Preparation, characterization, and in vitro gastrointestinal digestibility of oil-in-water emulsion-agar gels. Biosci Biotechnol Biochem 77:467–474. doi:10.1271/bbb.120659

    Article  CAS  Google Scholar 

  • Weiss J, Scherze I, Muschiolik G (2005) Polysaccharide gel with multiple emulsion. Food Hydrocoll 19:605–615. doi:10.1016/j.foohyd.2004.10.023

    Article  CAS  Google Scholar 

  • WHO/FAO Expert Consultation (2003) Diet, nutrition and the prevention of chronic diseases. World Health Organization. http://www.who.int/dietphysicalactivity/publications/trs916/download/en/. Accessed 15 Feb 2017

  • Wooster TJ, Day L, Xu M, Golding M, Oiseth S, Keogh J, Clifton P (2014) Impact of different biopolymer networks on the digestion of gastric structured emulsions. Food Hydrocoll 36:102–114. doi:10.1016/j.foodhyd.2013.09.009

    Article  CAS  Google Scholar 

  • Yang M, Liu F, Tang C-H (2013) Properties and microstructure of transglutaminase-set soy protein-stabilized emulsion gels. Food Res Int 52:409–418. doi:10.1016/j.foodres.2011.11.012

    Article  CAS  Google Scholar 

  • Zetzl AK, Marangoni AG, Barbut S (2012) Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food Funct 3:327–337. doi:10.1039/C2FO10202A

    Article  CAS  Google Scholar 

  • Zhang R, Zhang Z, Zhang H, Decker EA, McClements DJ (2015) Influence of emulsifier type on gastrointestinal fate of oil-in-water emulsions containing anionic dietary fiber (pectin). Food Hydrocoll 45:175–185. doi:10.1016/j.foodhyd.2014.11.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R. B. thanks the Spanish Ministry of Economy and Competitiveness for his contract through the Ramón y Cajal Program and A. G. for the BES-2012-054752 (FPI) pre-doctoral fellowship. This research was supported under Project AGL2011-29644-C02-01, AGL2014-53207-C2-1-R and AGL2014-53207-C2-2-R of the Plan Nacional de Investigación Cientifica, Desarrollo e Innovación Tecnologica (I + D+I), Ministerio de Economia y Competitividad, and Intramural project CSIC: 201470E056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricard Bou.

Additional information

Susana Cofrades and Ricard Bou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cofrades, S., Bou, R., Flaiz, L. et al. Bioaccessibility of hydroxytyrosol and n-3 fatty acids as affected by the delivery system: simple, double and gelled double emulsions. J Food Sci Technol 54, 1785–1793 (2017). https://doi.org/10.1007/s13197-017-2604-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2604-x

Keywords

Navigation