Skip to main content
Log in

Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food

  • Review
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) are diverse group of natural proteins present in animals, plants, insects and bacteria. These peptides are responsible for defense of host from pathogenic organisms. Chemical, enzymatic and recombinant techniques are used for the synthesis of antimicrobial peptides. These peptides have been found to be an alternative to the chemical preservatives. Currently, nisin is the only antimicrobial peptide, which is widely utilized in the preservation of food. Antimicrobial peptides can be used alone or in combination with other antimicrobial, essential oils and polymeric nanoparticles to enhance the shelf-life of food. This review presents an overview on different types of antimicrobial peptides, purification techniques, mode of action and application in food preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelbasset M, Djamila K (2008) Antimicrobial activity of autochthonous lactic aicd bacteria isolated from Algerian traditional fermented milk “Raib”. Afr J Biotechnol 7(16):2908–2914

    CAS  Google Scholar 

  • Abraham P, George S, Santhosh K (2014) Novel antibacterial peptides from the skin secretion of the Indian bicoloured frog Clinotarsus curtipes. Biochimie 97:144–151

    Article  CAS  Google Scholar 

  • D’Amato D, Sinigaglia M (2010) Antimicrobial agents of microbial origin : Nisin. In: Bevilacqua A, Rosaria M, Sinigaglia M (Ed) Application of alternative food-preservation technologies to enhance food safety and stability, 1st edn. Bentham Science, USA, pp. 83–91

  • Bagley CP (2014) Potential role of synthetic AMPs in animal health to combat growing concerns of antibiotic resistance—a review. Wyno Acad J Agri Sci 2(2):19–28

    Google Scholar 

  • Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575

    Article  Google Scholar 

  • Bala P, Kumar J (2014) Antimicrobial peptides: a review. Int J Life Sci Biotechnol Pharm Res 3(1):61–71

    Google Scholar 

  • Balciunas EM, Martinez FC, Todorov SD, de Melo Franco BG, Converti A, de Souza Oliveira RP (2013) Novel biotechnological applications of bacteriocins: a review. Food Control 32:134–142

    Article  CAS  Google Scholar 

  • Barany G, Merrifield R (1980) The peptides: analysis, synthesis and biology. Academic Press, New York

    Google Scholar 

  • Berglund N, Piggot T, Jefferies D, Sessions R, Bond P, Khalid S (2015) Interaction of the antimicrobial peptide polymyxin b1 with both membranes of E.coli: a molecular dynamics study. PLoS Comput Biol. doi:10.1371/journal.pcbi.1004180

    Google Scholar 

  • Bezares BR, Saenz Beatriz Y, Zarazaga M, Torres C, Larrea RZ (2007) Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. Int J Food Microbiol 116:32–36

    Article  Google Scholar 

  • Biswas A, Banerjee R (2016) A lab originated bacteriocin and its partial purification and demonstration of antimicrobial activity. Int J Curr Microbiol App Sci 5(3):728–737

    Article  Google Scholar 

  • Bolintineanu DS, Kaznessism YN (2011) Computational studies of protegrin antimicrobial peptide: a review. Peptides 32:188–201

    Article  CAS  Google Scholar 

  • Brogden KA, Ackermann M, Huttner KM (1997) Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial. Int J Antimicro Agents 1:1615–1617

    Google Scholar 

  • Carneiro VA, Duarte HS, Prado MG, Silva ML, Teixeira M, dos Santos YM, Vasconcelos IB, Cunha RMS (2015) Antimicrobial peptides: from synthesis to clinical perspectives. In: Méndez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs, 1st edn. Formatex Research Center, Spain, pp 81–90

    Google Scholar 

  • Chen F, Zhang F, Wang A, Li H, Wang Q, Zeng Z, Wang S, Xi T (2010) Recent progress in the chemo-enzymatic peptide synthesis. Afr J Pharm Pharmacol 4(10):721–730

    CAS  Google Scholar 

  • Chopra L, Singh G, Choudhary V, Sahoo DK (2014) Sonorensin: an antimicrobial peptide belonging to the heterocycloanthracin subfamily of bacteriocins, from a new marine isolate, Bacillus sonorensis MT93. Appl Environ Microbiol 80:2981–2990

    Article  Google Scholar 

  • Colins T, Mant CT, Ya Z, Mant CT, Yan Z, Popa TV, Kovacs JM, Mills JB, Tripet BP, Hodges RS (2012) HPLC analysis and purification of peptides. Method Mol Biol 386:3–55

    Google Scholar 

  • Conde R, Arguello M, Izquierdo J, Noguez R, Moreno M, Lanz H (2012) Natural antimicrobial peptides from eukaryotic organisms. In: Bobbaraola V (ed) Antimicrobial agents. InTech, Croatia, pp 52–72

  • Cruz J, Ortiz C, Guzmán F, Fernández-Lafuente R, Torres R (2014) Antimicrobial peptides: promising compounds against pathogenic microorganisms. Curr Med Chem 21:1–23

    Article  Google Scholar 

  • De Zoysa GH, Cameron AJ, Hegde VV, Raghothama S, Sarojini V (2015) Antimicrobial peptide with potential for biofilm eradication: synthesis and structure activity relationship studies of battacin peptides. J Med Chem 58:625–639

    Article  Google Scholar 

  • Elayaraja S, Annamalai N, Mayavu P, Balasubramanian T (2014) Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum. Asian Pac J Trop Biomed 4:305–311

    Article  Google Scholar 

  • Espitia PP, Soares NF, Coimbra JS, De Andrade NJ, Renatom SC, Medeiros E (2012) Bioactive peptides: synthesis, properties, and applications in the packaging and preservation of food. Compr Rev Food Sci Food Saf 11:187–204

    Article  CAS  Google Scholar 

  • Etchegaray A, Machini MT (2013) Antimicrobial lipopeptides: in vivo and in vitro synthesis. In: Mendez-vilas A (ed) Microbial pathogens and strategies for combating them, science, technology and education. Extremadura, Formatex, pp 951–959

    Google Scholar 

  • Fadaei V (2012) Milk Proteins-derived antibacterial peptides as novel functional food ingredients. Ann Biol Res 3(5):2520–2526

    CAS  Google Scholar 

  • Fernandez de Caleya R, Gonzalez-Pascual B, Garcia OF, Carbonero P (1972) Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 23:998–1000

    CAS  Google Scholar 

  • Fleming A (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc Royals Lon 93:306–317

    Article  CAS  Google Scholar 

  • Galvez AM, Grande Burges MJ, Lucas Loper R, Perez Pulido R (2014) Natural antimicrobials for food preservation. In: Galvez A, GrandeBurgos MJ, Lucas Lopez R, Perez Pulido R (eds) Food biopreservation. Springer, New York, pp 1–14. doi: 10.1007/978-1-4939-2029-7_2

  • Ganz T, Selsted ME, Szklarek D, Harwig SL, Daher K, Bainton DF, Lehre RI (1985) Defensins—natural peptide antibiotics of humanneutrophils. J Clin Invest 76:427–1435

    Article  Google Scholar 

  • Gause GF, Brazhnikova MG (1944) Gramicidin S and its use in the treatment of infected wounds. Nature 54:703

    Article  Google Scholar 

  • Gazil E, Miller IR, Biggin PC, Sansom MS, Shai Y (1996) Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol 258:860–870

    Article  Google Scholar 

  • Groves ML, Peterson RF, Kiddy CA (1965) Polymorphism in the red protein isolated from milk of individual cows. Nature 207:1007–1008

    Article  CAS  Google Scholar 

  • Guilhelmelli F, Nathalia V, Albuquerque P, Deremgowksi LS, Ildinete SP, Kyaw CM (2013) Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. doi:10.3389/fmicb.2013.00353

    Google Scholar 

  • Harris F, Dennison S, Phoenix DA (2009) Anionic antimicrobial peptide from eukaryotic organisms. Curr Protein Pept Sci 10(6):585–606

    Article  CAS  Google Scholar 

  • Hintz T, Matthews KK, Di R (2015) The use of plant antimicrobial compounds for food preservation. Bio Med Res Int. doi:10.1155/2015/246264

    Google Scholar 

  • Hotchkiss RD, Dubos RJ (1940) Fractionation of the bactericidal agent from cultures of a soil Bacillus. Curr Prot Pept Sci 132:791–792

    CAS  Google Scholar 

  • Jabeen U, Khanum A (2014) Isolation and characterization of potential food preservative peptide from Momordica charantia. L. Arabian J Chem doi:10.1016/j.arabjc.2014.06.009

    Google Scholar 

  • Kraszewska J, Beckett MC, James TC, Bond U (2016) Comparative analysis of the antimicrobial activities of plant defensin-like and ultrashort peptides against food-spoiling bacteria. Appl Environ Microbiol. doi:10.1128/AEM.00558-16

    Google Scholar 

  • Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochem 35:13723–13728

    Article  CAS  Google Scholar 

  • Mak AS, Jones BL (1976) Amino acid sequence of wheat betapurothionin. Can J Biochem 54:835–842

    Article  CAS  Google Scholar 

  • Mangalassary S, Han I, Rieck J, Acton J, Jiang X, Sheldon B, Dawson P (2007) Effect of combining nisin and/or lysozyme with in-package pasteurization on thermal inactivation of Listeria monocytogenes in ready-to-eat turkey bologna. J Food Prot 70:2503–2511

    CAS  Google Scholar 

  • Meza J, Zarzosa A, Corona J, Bideshi D (2015) AMPs: current and potential applications in biomedical therapies. Biomed Res Int. doi:10.1155/2015/367243

    Google Scholar 

  • Mills S, Stanton C, Hill C, Ross RP (2011) New developments and applications of bacteriocins and peptides in foods. Ann Rev Food Sci Technol 2:299–329

    Article  CAS  Google Scholar 

  • Mohanty D, Jena R, Choudhury PK, Pattnaik R, Mohapatra S, Saini MR (2016) Milk derived antimicrobial bioactive peptides: a review. Int J Food Prop 19:837–846

    Article  CAS  Google Scholar 

  • Ohtani S, Okada T, Yoshizumi H, Kagamiyama H (1977) Complete primary structures of 2 subunits of purothionin-A, a lethal protein for brewers yeast from wheat flour. J Biochem 82:753–767

    CAS  Google Scholar 

  • Oyinloye BE, Adenow AF, Kappo AP (2015) Reactive oxygen species, apoptosis, amps and human inflammatory diseases. Pharmaceuticals 8:151–175

    Article  CAS  Google Scholar 

  • Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32:143–171

    Article  CAS  Google Scholar 

  • Pelegrini PB, del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF (2011) Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int. doi:10.1155/2011/250349

    Google Scholar 

  • Peravali JB, Kotra SR, Sobha K, Nelson R, Rajesh KV, Pulicherla KK (2013) AMPs: an effective alternative for antibiotic therapy. Mintage J Pharma Med Sci 2(2):1–7

    CAS  Google Scholar 

  • Prombutara P, Kulwatthanasal Y, Supaka N, Sramala I, Chareonpornwattana S (2012) Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control 24:184–190

    Article  CAS  Google Scholar 

  • Rea MC, Ross RP, Cotter PD, Hill C (2011) Classification of bacteriocins from Gram-positive bacteria. In Drider D, Rebuffat S (eds) Prokaryotic antimicrobial peptides: from genes to application, 1st edn. Springer, New York, pp. 29–47

    Chapter  Google Scholar 

  • Ribeiro A, Carrasco L (2014) Novel formulations for antimicrobial peptides. Int J Mol Sci 15:18040–18083

    Article  Google Scholar 

  • Riedl S, Zweytick D, Lohner K (2011) Membrane-active host defense peptides challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 164:766–781

    Article  CAS  Google Scholar 

  • Saeed AEA, Zubeir EM, Owni OAO (2009) Antimicrobial resistance of bacteria associated with raw milk contaminated by chemical preservatives. World J Dairy Food Sci 4(1):65–69

    Google Scholar 

  • Salton MRJ (1958) The lysis of micro-organisms by lysozyme and related enzymes. J Gen Microbiol 18:481–490

    Article  CAS  Google Scholar 

  • Sankar R, Deepthi N, Priyanka V, Srinivas Reddy P, Rajanikanth P, Kumar VK, Indira M (2012) Purification and characterization of bacteriocin produced by Lactobacillus plantarum isolated from cow milk. Int J Microbiol Res 3(2):133–137

    Google Scholar 

  • Scocchi M, Mardirossian M, Runti G, Benincasa M (2016) Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria. Curr Top Med Chem 16(1):76–88

    Article  CAS  Google Scholar 

  • Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121:123–138

    Article  CAS  Google Scholar 

  • Sewald N, Jakubke H (2002) Peptides: chemistry and biology. Wiley-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  • So JE, Kang SH, Kim BG (1998) Lipase-catalyzed synthesis of peptides containing D-amino acid: facts and artifacts. Enzyme Microb Technol 23(3):211–215

    Article  CAS  Google Scholar 

  • Solomakos N, Govaris A, Koidis P, Botsoglou N (2008) The antimicrobial effect of thyme essential oil, nisin and their combination against Escherichia coli O157:H7 in minced beef during refrigerated storage. Meat Sci 80(1):159–166

    Article  CAS  Google Scholar 

  • Song H, Zheng W (2015) Antimicrobial natural products The battle against microbial pathogens: basic science, technological advances and educational programs In: Méndez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs, 1st edn. Formatex Research Center, Spain, pp 49-58

    Google Scholar 

  • Song DF, Zhu MY, Gu Q (2014) Purification and characterization of plantaricin zj5, a new bacteriocin produced by Lactobacillus plantarum ZJ5. PLoS One 9(8):1–8

    Google Scholar 

  • Stephens JM, Marshall J (1962) Some properties of an immune factor isolated from the blood of actively immunised wax moth larvae. Can J Microbiol 8:719–725

    Article  CAS  Google Scholar 

  • Strempel N, Strehmel Overhag J (2015) Potential application of antimicrobial peptide in the treatment of bacterial biofilm infections. Curr Pharma Des 21:67–84

    Article  CAS  Google Scholar 

  • Suganthi V, Selvaranjan E, Subathradevi C, Mohansrinivasan V (2012) Lantibiotic nisin: natural preservative from Lactococcus lactis. Int J Res Pharma 3(1):13–19

    CAS  Google Scholar 

  • Sumi CD, Yang BW, Yeo IC, Hahm YT (2015) Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol 61:93–103

    Article  CAS  Google Scholar 

  • Tiwari BK, Valdramidis VP, O’Donnell CP (2009) Application of natural antimicrobials for food preservation. J Agric Food Chem. doi:10.1021/jf900668

    Google Scholar 

  • Upendra RS, Khandelwal P, Jana K, Ajay Kumar N, Gayathri Devi M, Stephaney ML (2016) Bacteriocin production from indigenous strains of lactic acid bacteria isolated from selected fermented food sources. Int J Pharma Res Health Sci 4(1):982–990

    Google Scholar 

  • Vocadlo DJ, Davies GJ, Laine R, Withers SG (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412:835–838

    Article  CAS  Google Scholar 

  • Wang Q, Zhu F, Xin Y, Liu J, Luo L, Yin Z (2011) Expression and purification of antimicrobial peptides buforin IIb in Escherichia coli. Biotechnol Lett 33:2121–2126

    Article  CAS  Google Scholar 

  • Wang S, Zeng X, Yang Q, Qiao S (2016) Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int J Mol Sci 17(603):1–12

    Google Scholar 

  • Zaffiri L, Gardner J, Toledo PH (2012) History of antibiotics from salvarsan to cephalosporins. J Invest Surg 25:67–77

    Article  Google Scholar 

  • Zhao R, Duan G, Yang T, Niu S, Wang Y (2015) Purification, characterization and antibacterial mechanism of bacteriocin from Lactobacillus Acidophilus XH1. Trop J Pharm Res 14(6):989–995

    Article  CAS  Google Scholar 

  • Zohri M, Alavidjeh M, Mirdamadi S, Nasr H, Ardestani S, Arabzadeh A (2013) Nisin loaded chitosan/alginate nanoparticles: a hopeful hybrid biopreservative. J Food Safety 3:40–49

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Department of Science and Technology for providing INSPIRE Fellowship and UGC, New Delhi for financial assistance under SAP program. The authors would like to thank the financial support rendered by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Processo: 300127/2015-4; 150745/2015-0), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, M., Pandit, R., Gaikwad, S. et al. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. J Food Sci Technol 53, 3381–3394 (2016). https://doi.org/10.1007/s13197-016-2318-5

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2318-5

Keywords

Navigation