Skip to main content
Log in

Oxidative polyaldehyde production: a novel approach to the conjugation of dextran with soy peptides for improved emulsifying properties

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Dextran (polyol) was oxidized with 0, 0.5, 1, and 2 % sodium hypochlorite at pH 9.5 and 35 °C to produce polyaldehyde dextran (PD), which was subsequently conjugated with soy peptides (SP) to improve surface activity. SP–PD complexes were formed by heating 1 % SP and 10 % PD at 60 °C and pH 6.5 for 48 h. PD was more reactive than unmodified dextran with SP to produce conjugates based on the Schiff base with absorption at 294 nm. The formation of SP–PD complexes was confirmed by SDS–PAGE with glycoprotein staining. Turbidity and particle size measurements indicated the SP–PD conjugates had significantly improved emulsifying properties compared to non-conjugated SP and the SP/PD mixtures. The results indicate that controlled oxidation of polysaccharides can be a novel technique to efficiently synthesize amphiphilic functional biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad S, Tester RF, Corbett A, Karkalas J (2006) Dextran and 5-aminosalicylic acid (5-ASA) conjugates: synthesis, characterisation and enzymic hydrolysis. Carbohydr Res 341:2694–2701

    Article  CAS  Google Scholar 

  • Akhtar M, Dickinson E (2003) Emulsifying properties of whey protein–dextran conjugates at low pH and different salt concentrations. Colloids Surf B 31:125–132

    Article  CAS  Google Scholar 

  • Babiker EE (2000) Effect of transglutaminase treatment on the functional properties of native and chymotrypsin-digested soy protein. Food Chem 70:139–145

    Article  CAS  Google Scholar 

  • Bogdanov MG, Palamareva MD (2004) cis/trans-Isochromanones. DMAP induced cycloaddition of homophthalic anhydride and aldehydes. Tetrahedron 60:2525–2530

    Article  CAS  Google Scholar 

  • de Castro RJS, Sato HH (2014) Antioxidant activities and functional properties of soy protein isolate hydrolysates obtained using microbial proteases. Int J Food Sci Technol 49:317–328

    Article  Google Scholar 

  • de Nooy AEJ, Besemer AC, van Bekkum H (1995) Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution. Kinetics and mechanism. Tetrahedron 51:8023–8032

    Article  Google Scholar 

  • Diftis N, Kiosseoglou V (2006) Physicochemical properties of dry-heated soy protein isolate–dextran mixtures. Food Chem 96:228–233

    Article  CAS  Google Scholar 

  • Dong S, Panya A, Zeng M, Chen B, McClements DJ, Decker EA (2012) Characteristics and antioxidant activity of hydrolyzed β-lactoglobulin–glucose Maillard reaction products. Food Res Int 46:55–61

    Article  CAS  Google Scholar 

  • Feng J, Xiong Y (2003) Interaction and functionality of mixed myofibrillar and enzyme-hydrolyzed soy proteins. J Food Sci 68:803–809

    Article  CAS  Google Scholar 

  • Foegeding EA, Davis JP (2011) Food protein functionality: a comprehensive approach. Food Hydrocoll 25:1853–1864

    Article  CAS  Google Scholar 

  • Franzen KL, Kinsella JE (1976) Functional properties of succinylated and acetylated soy protein. J Agric Food Chem 24:788–795

    Article  CAS  Google Scholar 

  • Gusakov AV, Kondratyeva EG, Sinitsyn AP (2011) Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities. Int J Anal Chem 2011:1–4

    Article  Google Scholar 

  • Jiang J, Chen J, Xiong YL (2009) Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline ph-shifting processes. J Agric Food Chem 57:7576–7583

    Article  CAS  Google Scholar 

  • Johnston S, Nickerson M, Low N (2015) The physicochemical properties of legume protein isolates and their ability to stabilize oil-in-water emulsions with and without genipin. J Food Sci Technol 52:4135–4145

    Article  CAS  Google Scholar 

  • Kato A (2002) Industrial applications of Maillard-type protein–polysaccharide conjugates. Food Sci Technol Res 8:193–199

    Article  CAS  Google Scholar 

  • Kato A, Mifuru R, Matsudomi N, Kobayashi K (1992) Functional casein–poly saccharide conjugates prepared by controlled dry heating. Biosci Biotechnol Biochem 56:567–571

    Article  CAS  Google Scholar 

  • Kuakpetoon D, Wang Y-J (2001) Characterization of different starches oxidized by hypochlorite. Starch Stärke 53:211–218

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lawal O, Adebowale K, Adebowale Y (2007) Functional properties of native and chemically modified protein concentrates from bambarra groundnut. Food Res Int 40:1003–1011

    Article  CAS  Google Scholar 

  • Li Y, Zhong F, Ji W, Yokoyama W, Shoemaker CF, Zhu S, Xia W (2013) Functional properties of Maillard reaction products of rice protein hydrolysates with mono-, oligo-and poly-saccharides. Food Hydrocoll 30:53–60

    Article  Google Scholar 

  • Liu Y, Zhao G, Zhao M, Ren J, Yang B (2012) Improvement of functional properties of peanut protein isolate by conjugation with dextran through Maillard reaction. Food Chem 131:901–906

    Article  CAS  Google Scholar 

  • Maia J, Carvalho RA, Coelho JFJ, Simões PN, Gil MH (2011) Insight on the periodate oxidation of dextran and its structural vicissitudes. Polymer 52:258–265

    Article  CAS  Google Scholar 

  • Manju S, Sreenivasan K (2011) Detection of glucose in synthetic tear fluid using dually functionalized gold nanoparticles. Talanta 85:2643–2649

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Morales R, Martínez KD, Pizones Ruiz-Henestrosa VM, Pilosof AMR (2015) Modification of foaming properties of soy protein isolate by high ultrasound intensity: particle size effect. Ultrason Sonochem 26:48–55

    Article  CAS  Google Scholar 

  • Oliveira FCd, Coimbra JSdR, de Oliveira EB, Zuñiga ADG, Rojas EEG (2016) Food protein–polysaccharide conjugates obtained via the Maillard reaction: a review. Crit Rev Food Sci Nutr 56:1108–1125

    Article  Google Scholar 

  • Pearce KN, Kinsella JE (1978) Emulsifying properties of proteins: evaluation of a turbidimetric technique. J Agric Food Chem 26:716–723

    Article  CAS  Google Scholar 

  • Rizzo TR, Park YD, Levy DH (1986) Dispersed fluorescence of jet-cooled tryptophan: excited state conformers and intramolecular exciplex formation. J Chem Phys 85:6945–6951

    Article  CAS  Google Scholar 

  • Samanta N, Mahanta DD, Hazra S, Kumar GS, Mitra RK (2014) Short chain polyethylene glycols unusually assist thermal unfolding of human serum albumin. Biochimie 104:81–89

    Article  CAS  Google Scholar 

  • Sloan JW, Alexander B, Lohmar R, Wolff I, Rist C (1954) Determination of dextran structure by periodate oxidation techniques. J Am Chem Soc 76:4429–4434

    Article  CAS  Google Scholar 

  • Snyder SL, Sobocinski PZ (1975) An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem 64:284–288

    Article  CAS  Google Scholar 

  • Suvorova O, Iozep A, Passet B (2001) Reactivity of polysaccharide aldehydes toward N-nucleophiles. Russ J Appl Chem 74:1016–1020

    Article  CAS  Google Scholar 

  • Tsumura K, Saito T, Tsuge K, Ashida H, Kugimiya W, Inouye K (2005) Functional properties of soy protein hydrolysates obtained by selective proteolysis. LWT Food Sci Technol 38:255–261

    Article  CAS  Google Scholar 

  • Vettori MHPB, Mukerjea R, Robyt JF (2011) Comparative study of the efficacies of nine assay methods for the dextransucrase synthesis of dextran. Carbohydr Res 346:1077–1082

    Article  CAS  Google Scholar 

  • Vivian JT, Callis PR (2001) Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80:2093–2109

    Article  CAS  Google Scholar 

  • Wang Y-J, Wang L (2003) Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohydr Polym 52:207–217

    Article  CAS  Google Scholar 

  • Zhu D, Damodaran S, Lucey JA (2008) Formation of whey protein isolate (WPI)–dextran conjugates in aqueous solutions. J Agric Food Chem 56:7113–7118

    Article  CAS  Google Scholar 

  • Zhu D, Damodaran S, Lucey JA (2010) Physicochemical and emulsifying properties of whey protein isolate (WPI)–dextran conjugates produced in aqueous solution. J Agric Food Chem 58:2988–2994

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the United States Department of Agriculture (USDA) National Institute of Food and Agriculture (Hatch Project 1005724), and an Oversea Study Fellowship from the China Scholarship Council (to X.W.). We thank Ms. Alma True for helpful discussion. Approved for publication as Journal Article Number 15-07-055 by the Director of the Kentucky Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youling L. Xiong.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xiong, Y.L. Oxidative polyaldehyde production: a novel approach to the conjugation of dextran with soy peptides for improved emulsifying properties. J Food Sci Technol 53, 3215–3224 (2016). https://doi.org/10.1007/s13197-016-2296-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2296-7

Keywords

Navigation