Skip to main content
Log in

Novel biopreservatives to enhance the safety and quality of strawberry juice

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Pomegranate extract, vanillin and geraniol were studied as natural antimicrobials on strawberry juice. Strawberry juice was treated with each agent at two concentrations: pomegranate extract at 180 and 360 μg/mL; vanillin at 2.5 and 5 mg/mL; and geraniol at 0.6 and 1.2 μL/mL. After being treated, juices were stored at 5 °C and microbiological, physicochemical and sensory studies were carried out. Also, a second batch of juice was inoculated with Escherichia coli O157:H7 (105 CFU/mL) before being treated, to safety study. Geraniol and vanillin, at both concentrations tested, were highly effective in reducing the native microflora on strawberry juice (more than 3 log cycles), extending the microbiological shelf-life of the product. Moreover, both antimicrobials improved the product safety by reducing inoculated E. coli O157:H7. Furthermore, vanillin showed a significant increase in polyphenol content compared to untreated juice. On the other hand, pomegranate extract applied at the highest concentration showed important reductions on mesophilic and psychrophilic bacteria, but no effect on yeast and molds and inoculated E. coli. Even though vanillin and geraniol incorporation on strawberry juice had a negative effect on its sensory quality, pomegranate extract had no impact on the sensory attributes evaluated. Combinations of the biopreservatives could be studied in order to decrease the concentration of the antimicrobials, reducing the effects on strawberry juice sensory characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez MV, Moreira MR, Ponce A (2012) Antiquorum sensing and antimicrobial activity of natural agents with potential use in food. J Food Safety 32:379–387. doi:10.1111/j.1745-4565.2012.00390.x

    Article  CAS  Google Scholar 

  • Ayala-Zavala JF, Del Toro-Sanchez L, Alvarez-Parrilla E, Gonzalez-Aguilar GA (2008) High relative humidity in-package of fresh-cut fruits and vegetables: advantage or disadvantage considering microbiological problems and antimicrobial delivering systems? J Food Sci 73:41–47. doi:10.1111/j.1750-3841.2008.00705.x

    Article  Google Scholar 

  • Aziz NH, Farag SE, Mousa LAA, Abo-Zaid MA (1998) Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios 93:43–54

    CAS  Google Scholar 

  • Bard M, Albrecht MR, Gupta N, Guynn CJ, Stillwell W (1988) Geraniol interferes with membrane functions in strains of candida and saccharomyces. Lipids 23:534–538. doi:10.1007/bf02535593

    Article  CAS  Google Scholar 

  • Barnard DR, Xue R (2004) Laboratory evaluation of mosquito repellents against aedes albopictus, culex nigripalpus, and ochlerotatus triseriatus (diptera: culicidae). J Med Entomol 41:726–730. doi:10.1603/0022-2585-41.4.726

    Article  CAS  Google Scholar 

  • Baxter RL, Laurie WA, McHale D (1978) Transformations of monoterpenoids in aqueous acids: the reactions of linalool, geraniol, nerol and their acetates in aqueous citric acid. Tetrahedron 34:2195–2199. doi:10.1016/0040-4020(78)89026-7

    Article  CAS  Google Scholar 

  • Bicas JL, Neri-Numa IA, Ruiz ALTG, De Carvalho JE, Pastore GM (2011) Evaluation of the antioxidant and antiproliferative potential of bioflavors. Food Chem Toxicol 49:1610–1615. doi:10.1016/j.fct.2011.04.012

    Article  CAS  Google Scholar 

  • Boletín Oficial del Estado (BOE)(2001) Normas de higiene para la elaboración, distribución y comercio de comidas preparadas. Orden del 29 de diciembre del 2000. Boe 11:1435–1441.

  • Bortolomeazzi R, Sebastianutto N, Toniolo R, Pizzariello A (2007) Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, DPPH radical scavenging and oxidation potential. Food Chem 100:1481–1489. doi:10.1016/j.foodchem.2005.11.039

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30. doi:10.1016/s0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  • Buendia B, Gil MI, Tudela JA, Gady AL, Medina JJ, Soria C, et al. (2010) HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in strawberry cultivars. J Agr Food Chem 58:3916–3926. doi:10.1021/jf9030597

    Article  CAS  Google Scholar 

  • Burapadaja S, Bunchoo A (1995) Antimicrobial activity of tannins from Terminalia citrine. Planta Med 61:365–366. doi:10.1055/s-2006-958103

    Article  CAS  Google Scholar 

  • Chen W, Viljoen AM (2010) Geraniol — a review of a commercially important fragrance material. S Afr J Bot 76:643–651. doi:10.1016/j.sajb.2010.05.008

    Article  CAS  Google Scholar 

  • Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316. doi:10.1046/j.1365-2672.2000.00969.x

    Article  CAS  Google Scholar 

  • Elez-Martínez P, Martín-Belloso O (2005) Food safety aspects of pulsed electric fields. In: Sun DW (ed) Emerging technologies for food processing. Academic Press, Boston, pp. 183–218. doi:10.1016/b978-012676757-5/50010-4

    Google Scholar 

  • Faleiro ML (2011) The mode of antibacterial action of essential oils. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances 2:1143–1156

    Google Scholar 

  • Fitzgerald DJ, Stratford M, Narbad A (2003) Analysis of the inhibition of food spoilage yeasts by vanillin. Int J Food Microbiol 86:113–122. doi:10.1016/s0168-1605(03)00059-x

    Article  CAS  Google Scholar 

  • Fitzgerald DJ, Stratford M, Gasson MJ, Ueckert J, Bos A, Narbad A (2004) Mode of antimicrobial action of vanillin against Escherichia coli, lactobacillus plantarum and listeria innocua. J Appl Microbiol 97:104–113. doi:10.1111/j.1365-2672.2004.02275.x

    Article  CAS  Google Scholar 

  • Ismail T, Sestili P, Akhtar S (2012) Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. J Ethnopharmacol 143:397–405. doi:10.1016/j.jep.2012.07.004

    Article  CAS  Google Scholar 

  • Kuehl R (2001) Diseño de experimentos, 2nd edn. Thompson Learning Intl

  • Mittal GS, Griffiths MW (2005) Pulsed electric field processing of liquid foods and beverages. In: Sun DW (ed) Emerging technologies for food processing. Academic Press, Boston, pp. 99–139

    Chapter  Google Scholar 

  • Moon K, Delaquisb P, Toivonenb P, Stanichm K (2006) Effect of vanillin on the fate of Listeria monocytogenes and Escherichia coli O157:H7 in a model apple juice medium and in apple juice. Food Microbiol 23:169–174. doi:10.1016/j.fm.2005.02.005

    Article  CAS  Google Scholar 

  • Mphahlele RR, Fawole OA, Stander MA, Opara UL (2014) Preharvest and postharvest factors influencing bioactive compounds in pomegranate (Punica granatum L.) - a review. Sci Hort 178:114–123. doi:10.1016/j.scienta.2014.08.010

    Article  CAS  Google Scholar 

  • Naidu AS, Davidson PM (2000) Phyto-phenols. In: Naidu AS (ed) Natural food antimicrobial systems. CRC Press LLC, Boca Raton, London, New York, Washington DC, pp. 265–294. doi:10.1201/9781420039368.ch10

    Chapter  Google Scholar 

  • Parish ME (1997) Public health and non-pasteurized fruit juices. Crit Rev Microbiol 23:109–119. doi:10.3109/10408419709115132

    Article  CAS  Google Scholar 

  • Ponce A, Fritz R, Del Valle C, Roura S (2003) Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT- Food Sci Technol 36:679–684. doi:10.1016/s0023-6438(03)00088-4

    Article  CAS  Google Scholar 

  • Ponce A, Del Valle C, Roura S (2004) Shelf life of leafy vegetables treated with natural essential oils. J Food Sci Technol 69:550–556. doi:10.1111/j.1365-2621.2004.tb15515.x

    Google Scholar 

  • Ponce AG, Agüero MV, Roura SI, del Valle CE, Moreira MR (2008) Dynamics of indigenous microbial populations of butter head lettuce grown in mulch and on bare soil. J Food Sci 73:257–263. doi:10.1111/j.1750-3841.2008.00789.x

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

  • Ragaert P, Devlieghere F, Loos S, Dewulf L, Van Langenhove H, Debevere J (2006) Metabolite production of yeasts on a strawberry-agar during storage at 7 °C in air and low oxygen atmosphere. Food Microbiol 23:154–161. doi:10.1016/j.fm.2005.02.002

    Article  CAS  Google Scholar 

  • Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O (2006) Antimicrobial activity of essential oils on salmonella enteritidis, Escherichia coli, and listeria innocua in fruit juices. J Food Protect 69:1579–1586

    CAS  Google Scholar 

  • Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O (2008) Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int J Food Microbiol 121:313–327. doi:10.1016/j.ijfoodmicro.2007.11.010

    Article  CAS  Google Scholar 

  • Reddy MK, Gupta SK, Jacob MR, Khan SI, Ferreira D (2007) Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med 73:461–467. doi:10.1055/s-2007-967167

    Article  CAS  Google Scholar 

  • Sadler GD, Murphy PA (2010) pH and titratable acidity. In: Nielsen SS (ed) Food analysis. Springer, New York, pp. 231–233

    Google Scholar 

  • Saftner RA, Abbott JA, Bhagwat AA, Vinyard BT (2005) Quality measurement of intact and fresh-cut slices of Fuji, granny smith, pink lady, and gold rush apples. J Food Sci 70:317–324. doi:10.1111/j.1365-2621.2005.tb09985.x

    Article  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth Enzymol 299:152–178. doi:10.1016/s0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  • Stürtz M, Cerezo AB, Cantos-Villar E, Garcia-Parrilla MC (2011) Determination of the melatonin content of different varieties of tomatoes (lycopersicon esculentum) and strawberries (fragaria ananassa). Food Chem 127:1329–1334. doi:10.1016/j.foodchem.2011.01.093

    Article  Google Scholar 

  • Tehranifar A, Selahvarzi Y, Kharrazi M, Bakhsh VJ (2011) High potential of agro-industrial by-products of pomegranate (Punica granatum L.) as the powerful antifungal and antioxidant substances. Ind Crop Prod 34:1523–1527. doi:10.1016/j.indcrop.2011.05.007

    Article  CAS  Google Scholar 

  • Tiwari BK, O’Donnell CP, Patras A, Brunton N, Cullen PJ (2009) Effect of ozone processing on anthocyanins and ascorbic acid degradation of strawberry juice. Food Chem 113:1119–1126. doi:10.1016/j.foodchem.2008.08.085

    Article  CAS  Google Scholar 

  • Tomadoni B, Cassani L, Moreira MR, Ponce A (2015) Efficacy of vanillin and geraniol in reducing Escherichia coli O157:H7 on strawberry juice. LWT- Food Sci Technol 64:554–557. doi:10.1016/j.lwt.2015.06.039

    Article  CAS  Google Scholar 

  • Ultee A, Bennik MHJ, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Eniron Microbiol 68:1561–1568. doi:10.1128/aem.68.4.1561-1568.2002

    Article  CAS  Google Scholar 

  • Vasantha Rupasinghe HP, Boulter-Bitzer J, Ahn T, Odumeru JA (2006) Vanillin inhibits pathogenic and spoilage microorganisms in vitro and aerobic microbial growth in fresh-cut apples. Food Res Int 39:575–580. doi:10.1016/j.foodres.2005.11.005

    Article  Google Scholar 

  • Villaño D, Fernández-Pachón MS, Moyá ML, Troncoso AM, García-Parrilla MC (2007) Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 71:230–235. doi:10.1016/j.talanta.2006.03.050

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Universidad Nacional de Mar. del Plata (UNMDP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Tomadoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomadoni, B., Viacava, G., Cassani, L. et al. Novel biopreservatives to enhance the safety and quality of strawberry juice. J Food Sci Technol 53, 281–292 (2016). https://doi.org/10.1007/s13197-015-2068-9

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-2068-9

Keywords

Navigation