Skip to main content
Log in

The control of Botrytis fruit rot in strawberry using combined treatments of Chitosan with Zataria multiflora or Cinnamomum zeylanicum essential oil

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

This study evaluated the efficacy of the combined application of chitosan (CS) and Zataria multiflora (ZEO) or Cinnamomum zeylanicum essential oils (CEO) on the inhibition of Botrytis cinerea, the causal agent of strawberry gray mold on laboratory media and fruits during storage (7 days at 4 °C followed by 3 days at 20 °C). The application of different CS, CEO and ZEO concentrations inhibited the mycelial growth of the assayed fungus. The mixtures of CS and CEO (CC) or ZEO (CZ) inhibited the mycelia growth in potato dextrose agar, as well as the growth of B. cinerea in artificially infected strawberries stored at both room and cold temperature. Moreover, combined treatments showed more significant mycelial inhibition results and reduction of the IC50, MIC and MFC values compared to pure EOs or CS (p < 0.05). In fruit decay assays, combined treatments (CC or CZ) were able to reduce fungal decay in the range of 60–85 % at 9th day of storage. These results demonstrate the potential of the combined application of CS and CEO or ZEO at sub-inhibitory concentrations to control post-harvest pathogenic fungi in fruits, in particular, B. cinerea in strawberries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdolahi A, Hassani A, Ghosta Y, Bernousi I, Meshkatalsadat M (2010) Study on the potential use of essential oils for decay control and quality preservation of Tabarzeh table grape. J Plant Protect Res 50(1):45–52

    Article  CAS  Google Scholar 

  • Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. LWT-Food Sci Technol 43(6):837–842

    Article  CAS  Google Scholar 

  • Amil-Ruiz F, Blanco-Portales R, Muñoz-Blanco J, Caballero JL (2011) The strawberry plant defense mechanism: a molecular review. Plant Cell Physiol 52(11):1873–1903

    Article  CAS  Google Scholar 

  • Askarne L, Talibi I, Boubaker H, Boudyach E, Msanda F, Saadi B, Ait Ben Aoumar A (2012) In vitro and in vivo antifungal activity of several Moroccan plants against Penicillium italicum, the causal agent of citrus blue mold. Crop Prot 40:53–58

    Article  Google Scholar 

  • Avila-Sosa R, Palou E, Jiménez Munguía MT, Nevárez-Moorillón GV, Navarro Cruz AR, López-Malo A (2012) Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. Int J Food Microbiol 153(1):66–72

    Article  CAS  Google Scholar 

  • Badawy ME, Rabea EI (2009) Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol Technol 51(1):110–117

    Article  CAS  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46(2):446–475

    Article  CAS  Google Scholar 

  • Bassolé IHN, Juliani HR (2012) Essential oils in combination and their antimicrobial properties. Molecules 17(4):3989–4006

    Article  Google Scholar 

  • Bennis S, Chami F, Chami N, Bouchikhi T, Remmal A (2004) Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett Appl Microbiol 38(6):454–458

    Article  CAS  Google Scholar 

  • Bouchra C, Achouri M, Idrissi Hassani L, Hmamouchi M (2003) Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. J Ethnopharmacol 89(1):165–169

    Article  CAS  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253

    Article  CAS  Google Scholar 

  • Carmo ES, Lima EDO, Souza ELD, Sousa FBD (2008) Effect of cinnamomum zeylanicum blume essential oil on the rowth and morphogenesis of some potentially pathogenic Aspergillus species. Braz J Microbiol 39(1):91–97

    Article  Google Scholar 

  • Cháfer M, Sánchez‐González L, González‐Martínez C, Chiralt A (2012) Fungal decay and shelf life of oranges coated with chitosan and bergamot, thyme, and tea tree essential oils. J Food Sci 77(8):E182–E187

    Article  Google Scholar 

  • dos Santos NST, Athayde Aguiar AJA, de Oliveira CEV, Veríssimo de Sales C, de Melo e Silva S, Sousa da Silva R, de Souza EL (2012) Efficacy of the application of a coating composed of chitosan and Origanum vulgare L. essential oil to control Rhizopus stolonifer and Aspergillus niger in grapes (Vitis labrusca L.). Food Microbiol 32(2):345–353

    Article  Google Scholar 

  • Dutta J, Tripathi S, Dutta P (2012) Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Sci Technol Int 18(1):3–34

    Article  CAS  Google Scholar 

  • Gatto MA, Ippolito A, Linsalata V, Cascarano NA, Nigro F, Vanadia S, Di Venere D (2011) Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biol Technol 61(1):72–82

    Article  Google Scholar 

  • Ghorbani F, Panjehkeh N, Nasrollanejad S, Salari M, Sabagh S (2014) Inhibitory effect of essential oils of Eucalyptus sp. and Zataria multiflora on fungal growth of Macrophomina phaseolina. Archives of Phytopathology and Plant Protection (ahead-of-print), 1–4

  • Guo Z, Xing R, Liu S, Zhong Z, Ji X, Wang L, Li P (2008) The influence of molecular weight of quaternized chitosan on antifungal activity. Carbohydr Polym 71(4):694–697

    Article  CAS  Google Scholar 

  • Hassani A, Fathi Z, Ghosta Y, Abdollahi A, Meshkatalsadat MH, Marandi RJ (2012) Evaluation of plant essential oils for control of postharvest brown and gray mold rots on apricot. J Food Saf 32(1):94–101

    Article  CAS  Google Scholar 

  • Hernández-Lauzardo A, Bautista-Baños S, Velázquez-del Valle M, Méndez-Montealvo M, Sánchez-Rivera M, Bello-Pérez L (2008) Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer(Ehrenb.: Fr.) Vuill. Carbohydr Polym 73(4):541–547

    Article  Google Scholar 

  • Hu Y, Du Y-M, Liu H (2003) Antimicrobial activity of chitosan in combination with thymol. J-Wuhan Univ Nat Sci Ed 49(2):261–265

    CAS  Google Scholar 

  • Jianglian D, Shaoying Z (2013) Application of Chitosan Based Coating in Fruit and Vegetable Preservation. J Food Process Technol 4(5)

  • Matan N, Rimkeeree H, Mawson A, Chompreeda P, Haruthaithanasan V, Parker M (2006) Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. Int J Food Microbiol 107(2):180–185

    Article  CAS  Google Scholar 

  • Mohamed NH, El-Hadidy AM (2008) Studies of biologically active constituents of Verbascum eremobium Murb. and its inducing resistance against some diseases of cucumber. Egypt J Phytopathol 36:133–150

    Google Scholar 

  • Moradi M, Tajik H, Razavi Rohani SM, Oromiehie AR (2011) Effectiveness of Zataria multiflora Boiss essential oil and grape seed extract impregnated chitosan film on ready‐to‐eat mortadella‐type sausages during refrigerated storage. J Sci Food Agric 91(15):2850–2857

    Article  CAS  Google Scholar 

  • Paster N, Bullerman LB (1988) Mould spoilage and mycotoxin formation in grains as controlled by physical means. Int J Food Microbiol 7(3):257–265

    Article  CAS  Google Scholar 

  • Perdones A, Sánchez-González L, Chiralt A, Vargas M (2012) Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol Technol 70:32–41

    Article  CAS  Google Scholar 

  • Powelson R (1960) Initiation of strawberry fruit rot caused by Botrytis cinérea. Phytopathology 50:491–494

    Google Scholar 

  • Romanazzi G, Nigro F, Ippolito A (2000) Effectiveness of pre and postharvest chitosan treatments on storage decay of strawberries. Rivista di Frutticoltura e di Ortofloricoltura 62(5):71–75

    Google Scholar 

  • Saei-Dehkordi SS, Tajik H, Moradi M, Khalighi-Sigaroodi F (2010) Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food Chem Toxicol 48(6):1562–1567

    Article  CAS  Google Scholar 

  • Sajed H, Sahebkar A, Iranshahi M (2013) Zataria multiflora Boiss. (Shirazi thyme)—an ancient condiment with modern pharmaceutical uses. J Ethnopharmacol 145(3):686–698

    Article  Google Scholar 

  • Sánchez-González L, Pastor C, Vargas M, Chiralt A, González-Martínez C, Cháfer M (2011) Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol Technol 60(1):57–63

    Article  Google Scholar 

  • Sellamuthu PS, Sivakumar D, Soundy P, Korsten L (2013) Essential oil vapours suppress the development of anthracnose and enhance defence related and antioxidant enzyme activities in avocado fruit. Postharvest Biol Technol 81:66–72

    Article  CAS  Google Scholar 

  • Shao X, Cao B, Xu F, Xie S, Yu D, Wang H (2015) Effect of postharvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biol Technol 99:37–43

    Article  CAS  Google Scholar 

  • Shao X, Wang H, Xu F, Cheng S (2013) Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit. Postharvest Biol Technol 77:94–101

    Article  CAS  Google Scholar 

  • Soylu EM, Kurt Ş, Soylu S (2010) In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int J Food Microbiol 143(3):183–189

    Article  CAS  Google Scholar 

  • Tikhonov VE, Stepnova EA, Babak VG, Yamskov IA, Palma-Guerrero J, Jansson H-B, Avdienko ID (2006) Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2 (3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohydr Polym 64(1):66–72

    Article  CAS  Google Scholar 

  • Tripathi P, Dubey N (2004) Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol 32(3):235–245

    Article  Google Scholar 

  • Vu K, Hollingsworth R, Leroux E, Salmieri S, Lacroix M (2011) Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Res Int 44(1):198–203

    Article  CAS  Google Scholar 

  • Wang L, Liu F, Jiang Y, Chai Z, Li P, Cheng Y, Leng X (2011) Synergistic antimicrobial activities of natural essential oils with chitosan films. J Agric Food Chem 59(23):12411–12419

    Article  CAS  Google Scholar 

  • Xing Y, Li X, Xu Q, Yun J, Lu Y, Tang Y (2011) Effects of chitosan coating enriched with cinnamon oil on qualitative properties of sweet pepper (Capsicum annuum L.). Food Chem 124(4):1443–1450

    Article  CAS  Google Scholar 

  • Yen T-B, Chang S-T (2008) Synergistic effects of cinnamaldehyde in combination with eugenol against wood decay fungi. Bioresour Technol 99(1):232–236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Hashemi or SM. Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A., Hashemi, M. & Hosseini, S. The control of Botrytis fruit rot in strawberry using combined treatments of Chitosan with Zataria multiflora or Cinnamomum zeylanicum essential oil. J Food Sci Technol 52, 7441–7448 (2015). https://doi.org/10.1007/s13197-015-1871-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-1871-7

Keywords

Navigation