Skip to main content
Log in

Application of vacuum impregnation with anti-freezing proteins to improve the quality of truffles

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Vacuum impregnation (VI) with anti-freezing proteins was studied with the aim to minimize the loss in consistency occurring on truffles after thawing. Particularly, vacuum level, vacuum time and the relaxation time were modulated by using a Box-Behnken design. The results showed a significant weight increase of truffle samples in the range between 0.02 and 0.29 g/g proving that the impregnation occurred in all experimental conditions although the truffles showed a low porosity fraction (~6.33 %). After thawing, the samples submitted to pressure values lower than 150 mbar and vacuum times greater than 6.5 min, showed a consistency similar to the fresh samples, stating that the application of VI with a solution of anti-freezing proteins can be a useful method to reduce the loss in consistency probably caused by ice crystal formation. Moreover, after VI the samples showed an increase of porosity fraction probably due to the formation of new fractures as a consequence of the high rigidity of truffles. This phenomenon probably increased the absorption of anti-freezing proteins as a consequence of the improvement of solid–liquid surface contact area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Shabibi MMA, Toma SJ, Haddad BA (1982) Studies on Iraqi truffles. I. Proximate analysis and characterization of lipids. Can Inst Food Sci Technol J 15(3):200–202. doi:10.1016/S0315-5463(82)72538-6

    Article  CAS  Google Scholar 

  • Andres I, Salvatori D, Albors A, Chiralt A, Fito P (2001) Vacuum impregnation viability of some fruits and vegetables. In: Fito P, Chiralt A, Barat JM, Spiess WEL, Behsnilian D (eds) Osmotic dehydration and vacuum impregnation application in food industries. Technomic Publishing Company Inc, Lancaster, pp 53–59

    Google Scholar 

  • Atarés L, Chiralt A, González-Martínez C (2008) Effect of solute on osmotic dehydration and rehydration of vacuum impregnated apple cylinders (cv. Granny Smith). J Food Eng 89:49–56. doi:10.1016/j.jfoodeng.2008.04.002

    Article  Google Scholar 

  • Betoret N, Puente L, Diaz MJ, Pagan MJ, Garcia MJ, Gras ML, Martínez-Monzó J, Fito P (2003) Development of probiotic-enriched dried fruits by vacuum impregnation. J Food Eng 56:273–277

    Article  Google Scholar 

  • Beuchat LR, Brenneman TB, Dove CR (1993) Composition of the pecan truffle (Tuber texense). Food Chem 46(2):189–192. doi:10.1016/0308-8146(93)90035-E

    Article  CAS  Google Scholar 

  • Bland G, Cerretani L, Bendin A, Cardinal A, Scarpellin A, Lercker G (2008) Effect of vacuum impregnation on the phenolic content of Granny Smith and Stark Delicious frozen apple cvv. Eur Food Res Technol 226:1229–1237. doi:10.1007/s00217-007-0624-x

    Article  Google Scholar 

  • Bokhary HA, Parvez S (1993) Chemical composition of desert truffles Terfezia claveryi. J Food Compos Anal 6:285–293. doi:10.1006/jfca.1993.1031

    Article  CAS  Google Scholar 

  • Bonito G, Trappe JM, Rawlinson P, Vilgalys R (2010) Improved resolution of major clades within Tuber and taxonomy of species within the Tuber gibbosum complex. Mycologia 102(5):1042–1057. doi:10.3852/09-213

    Article  Google Scholar 

  • Box G, Behnken D (1960) Some new three level desing for the study of quantitative variables factors. Technometrics 2(4):455–475. doi:10.1080/00401706.1960.10489912

    Article  Google Scholar 

  • Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York

    Google Scholar 

  • Ceballos AM, Giraldo GI, Orrego CE (2012) Effect of freezing rate on quality parameters of freeze dried soursop fruit pulp. J Food Eng 111:360–365. doi:10.1016/j.jfoodeng.2012.02.010

    Article  Google Scholar 

  • Chàfer M, Gonzàlez-Martìnez C, Chiralt A, Fito P (2003) Microstructure and vacuum impregnation response of citrus peels. Food Res Int 36:35–41

    Article  Google Scholar 

  • Chiralt A, Fito P (2003) Transport mechanisms in osmotic dehydration: the role of the structure. Food Sci Technol Int 9(3):179–186. doi:10.1177/1082013203034757

    Article  Google Scholar 

  • Chiralt A, Fito P, Barat JM, Andres A, Gonzalez-Martinez C, Esciche I, Camacho MM (2001) Use of vacuum impregnation in food salting processes. J Food Eng 49:141–151

    Article  Google Scholar 

  • Corzo O, Brancho N, Rodriguez J, Gonzales M (2007) Predicting the moisture and salt contents of sardine sheets during vacuum pulse osmotic dehydration. J Food Eng 80:781–790. doi:10.1016/j.jfoodeng.2006.07.007

    Article  CAS  Google Scholar 

  • Cruz RMS, Vieira MC, Silva CLM (2009) The response of watercress (Nasturtium officinale) to vacuum impregnation: effect of an antifreeze protein type I. J Food Eng 95(3):39–345. doi:10.1016/j.jfoodeng.2009.05.013

    Google Scholar 

  • Culleré L, Ferreira V, Chevret B, Venturini ME, Sánchez-Gimeno AC, Blanco D (2010) Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography–olfactometry. Food Chem 122:300–306. doi:10.1016/j.foodchem.2010.02.024

    Article  Google Scholar 

  • Derossi A, De Pilli T, La Penna MP, Severini C (2011) pH reduction and vegetable tissue changes of zucchini during pulsed vacuum acidification. LWT- Food Sci Technol 44:1901–1907. doi:10.1016/j.lwt.2011.01.011

    Article  CAS  Google Scholar 

  • Derossi A, De Pilli T, Severini C (2010) Reduction in the pH of vegetables by vacuum impregnation: a study on pepper. J Food Eng 99:9–15. doi:10.1016/j.jfoodeng.2010.01.019

    Article  CAS  Google Scholar 

  • Derossi A, De Pilli T, Severini C (2013a) Application of pulsed vacuum acidification for the pH reduction of mushrooms. LWT –. Food Sci Technol 54:585–591. doi:10.1016/j.lwt.2013.05.2007

    CAS  Google Scholar 

  • Derossi A, De Pilli T, Severini C (2013b) Application of vacuum impregnation techniques to improve the pH reduction of vegetables: study on carrots and eggplants. Food Bioprocess Technol 6:3217–3226. doi:10.1007/s11947-012-0994-3

    Article  CAS  Google Scholar 

  • Díaz P, Ibáñez E, Señoráns FJ, Reglero G (2003) Truffle aroma characterization by headspace solid-phase microextraction. J Chromatogr A 1017(1–2):207. doi:10.1016/j.chroma.2003.08.016

    Article  Google Scholar 

  • Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, Da Silva EGP, Portugal LA, Dos Reis PS, Souza AS, Dos Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. doi:10.1016/j.aca.2007.07.011

    Article  CAS  Google Scholar 

  • Fito P, Chiralt A, Betoret N, Gras M, Chàfer M, Martìnez-Monzò J, Andrès A, Vidal D (2001a) Vacuum impregnation and osmotic dehydration in matrix engineering application in functional fresh food development. J Food Eng 49:175–183

    Article  Google Scholar 

  • Fito P, Chiralt A, Barat JM, Andrès A, Martìnez-Monzò J, Martìnez-Navarrete N (2001b) Vacuum impregnation for development of new dehydrated products. J Food Eng 49:297–302

    Article  Google Scholar 

  • Galindo FG, Sjoholm I (2004) Applying biochemical and physiological principles in the industrial freezing of vegetables: a case study on carrots. Trends Food Sci Technol 15:39–43. doi:10.1016/j.tifs.2003.07.006

  • Garcìa-Lafuente A, Guillamòn E, Villares A, Rostagno MA, Martìnez JA (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 58:537–552. doi:10.1007/s00011-009-0037-3

    Article  Google Scholar 

  • Giraldo G, Talens P, Fito P, Chiralt A (2003) Influence of sucrose solution concentration on kinetics and yield during osmotic dehydration of mango. J Food Eng 58:33–43

    Article  Google Scholar 

  • Gras ML, Vidal D, Betoret N, Chiralt A, Fito P (2003) Calcium fortification of vegetables by vacuum impregnation: interaction with cellular matrix. J Food Eng 28:279–284

    Article  Google Scholar 

  • Gras M, Vidal-Brotons D, Betoret N, Chiralt A, Fito P (2002) The response of some vegetables to vacuum impregnation. Innovative Food Sci Emerg Technol 3(02):263–269

    Article  Google Scholar 

  • Guillamòn E, Garcìa-Lafuente A, Lozano M, D’arrigo M, Rostagno MA, Villares A, Martìnez JA (2010) Edible mushroom: their roles in the prevention of cardiovascular diseases. Fitoterapia 81:715–723. doi:10.1016/j.fitote.2010.06.005

    Article  Google Scholar 

  • Guillemin A, Degraeve P, Guillon F, Lahaye M, Saurel R (2006) Incorporation of pectinmethylesterase in apple tissue either by soaking and vacuum impregnation. Enzym Microb Technol 38:610–616. doi:10.1016/j.enzmictec.2005.07.028

    Article  CAS  Google Scholar 

  • Hamza A, Zouari N, Zouari S, Jdir H, Zaidi S, Gtaric M, Neffati M (2013) Nutraceutical potential, antioxidant and antibacterial activities of Terfezia boudieri Chatin, a wild edible desert truffle from Tunisia arid zone. Arab J Chem. doi:10.1016/j.arabjc.2013.06.015

    Google Scholar 

  • Hincha DK, Zuther E, Hudertmark M, Heyer AG (2006) The role of compatible solutes in plant freezing tolerance: a case study on raffinose. In: Chen THH, Uemura M (eds) Cold Hardiness in Plants. Molecular Genetics, Cell Biology and Physiology. Cabi Publishing, UK, pp 203–218

    Google Scholar 

  • Hiraide G, Kato A, Nakashima T (2010) The smell and odours components of dried shiitake mushroom, Lentinula edodes V: changes in lenthionine and lentinic acid contents during the drying process. Jpn Wood Res Soc 56:477–482. doi:10.1007/s10086-010-1123-4

    Article  CAS  Google Scholar 

  • Hironaka K, Kikuchi M, Koaze H, Sato T, Kojima M, Yamamoto K, Yasuda K, Mori M, Tsuda S (2011) Ascorbic acid enrichment of whole potato tuber by vacuum-impregnation. Food Chem 127:1114–1118. doi:10.1016/j.foodchem.2011.01.111

    Article  CAS  Google Scholar 

  • Islam MN, Zhang M, Adhikari B, Xinfeng C, Xu B (2014) The effect of ultrasound-assisted immersion freezing on selected physicochemical properties of mushrooms. Int J Refrig 42:121–133. doi:10.1016/j.ijrefrig.2014.02.012

    Article  CAS  Google Scholar 

  • Jaworska G, Bernas E (2010) Effects of pre-treatment, freezing and frozen storage on the texture of Boletus edulis (Bull: Fr.) mushrooms. Int J Refrig 33:877–885. doi:10.1016/j.ijrefrig.2009.12.031

    Article  Google Scholar 

  • Kidmose U, Martens HJ (1999) Changes in texture, microstructure and nutritional quality of carrot slices during blanching and freezing. J Sci Food Agric 79:1747–1753. doi:10.1002/(SICI)1097-0010(199909)79

    Article  CAS  Google Scholar 

  • Kuo CF, Hsieh CH, Lin WY (2011) Proteomic response of LAP-activated RAW 264.7 macrophages to the anti-inflammatory property of fungal ergosterol. Food Chem 126:207–212. doi:10.1016/j.foodchem.2010.10.101

    Article  CAS  Google Scholar 

  • Li B, Sun DW (2002) Novel methods for rapid freezing and thawing of foods – a review. J Food Eng 54:175–182. doi:10.1016/S0260-8774(01)00209-6

    Article  Google Scholar 

  • Luard E (2006) Truffles. Frances Lincoln, London

    Google Scholar 

  • Martinez-Monzo J, Martinez-Navarrete N, Chiralt A, Fito P (1998) Mechanical and structural change in apple (var Granny Smith) due to vacuum impregnation with cryoprotectans. J Food Sci 63:499–503. doi:10.1111/j.1365-2621.1998.tb15772.x

    Article  CAS  Google Scholar 

  • Mauriello G, Marino R, D’auria M, Cerone G, Rana GL (2004) Determination of volatile organic compounds from truffles via SPME–GC–MS. J Chromatogr Sci 42(6):299–305. doi:10.1093/chromsci/42.6.299

    Article  CAS  Google Scholar 

  • Mello A, Murat C, Bonfante P (2006) Truffles: much more than a prized and local fungal delicacy. Fed Euro Microbiol Soc 260:1–8. doi:10.1111/j.1574-6968.2006.00252.x

    Article  CAS  Google Scholar 

  • Mencarelli F, Massantini R, Botondi R (1997) Physiological and textural response of truffles during low-temperature storage. J Hortic Sci 72(3):407–414

    Google Scholar 

  • Murcia MA, Martìnez-Tomè M, Vera A, Morte A, Gutierrez A, Honrubia M, Jimènez AM (2003) Effect of industrial processing on desert truffles Terfezia claveryi Chatin and Picoa juniperi Vittadini: proximate composition and fatty acids. J Sci Food Agric 83:535–541. doi:10.1002/jsfa.1397

    Article  CAS  Google Scholar 

  • Muujica-Paz H, Valdez-Fragoso A, Loopez-Malo A, Palou E, Welti-Chanes J (2003) Impregnation properties of some fruits at vacuum pressure. J Food Eng 56:307–314

    Article  Google Scholar 

  • Nazzaro F, Fratianni F, Picariello G, Coppola R, Reale A, Luccia DA (2007) Evaluation of gamma rays influence on some biochemical and microbiological aspects in black truffles. Food Chem 103:344–354. doi:10.1016/j.foodchem.2006.07.067

    Article  CAS  Google Scholar 

  • Paes SS, Stringari GB, Laurindo JB (2007) Effect of vacuum and relaxation periods and solution concentration on the osmotic dehydration of apples. Int J Food Sci Technol 42:441–447. doi:10.1111/j.1365-2621.2006.01255.x

    Article  CAS  Google Scholar 

  • Panarese V, Dejmek P, Rocculi P, Gómez Galindo F (2013) Microscopic studies providing insight into the mechanisms of mass transfer in vacuum impregnation. Innovative Food Sci Emerg Technol 18:169–179. doi:10.1016/j.ifset.2013.01.008

    Article  Google Scholar 

  • Phoon PY, Galindo FG, Vicente A, Dejmek P (2008) Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach. J Food Eng 88:144–148. doi:10.1016/j.jfoodeng.2007.12.016

    Article  CAS  Google Scholar 

  • Ponappa T, Scheerens JC, Miller AR (1993) Vacuum infiltration of polyamines firmness of strawberry slices under various storage conditions. J Food Sci 58:361–364. doi:10.1111/j.1365-2621.1993.tb04275.x

    Article  CAS  Google Scholar 

  • Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SMN, Somasundaram R (2006) Antioxidant activity of indigenous edible mushrooms. J Agric Food Chem 58:11616–11625. doi:10.1021/jf0615707

    Google Scholar 

  • Reale A, Sorrentino E, Iacumin L, Tremonte P, Manzano M, Maiuro L, Comi G, Coppola R, Succi M (2009) Irradiation treatments to improve the shelf life of fresh black truffles (truffles preservation by gamma-rays). J Food Sci 74(4):M196–M200. doi:10.1111/j.1750-3841.2009.01142.x

    Article  CAS  Google Scholar 

  • Rivera CS, Blanco D, Salvador ML, Venturini ME (2010) Shelf life extension of fresh Tuber aestivum and Tuber melanosporum truffles by modified atmosphere packaging with microperforated films. J Food Sci 75(4):225–233. doi:10.1111/j.1750-3841.2010.01602.x

    Article  Google Scholar 

  • Ruqaie IMA (2006) Effect of different treatment processes and preservation methods on the quality of truffles I. conventional methods (drying/freezing). J Food Process Preserv 30:335–351. doi:10.1111/j.1745-4549.2006.00069.x

    Article  Google Scholar 

  • Saltarelli R, Ceccaroli P, Cesari P, Barbieri E, Stocchi V (2008) Effect of storage on biochemical and microbiological parameters of edible truffles pieces. Food Chem 109:8–16. doi:10.1016/j.foodchem.2007.11.075

    Article  CAS  Google Scholar 

  • Shao SQ, Hernandez M, Kramer JKG, Rinker DL, Tsao R (2010) Ergosterol profiles, fatty acid composition, and antioxidant activities of button mushrooms as affected by tissue part and developmental stage. J Agric Food Chem 58(22):11616–11625. doi:10.1021/jf102285b

    Article  CAS  Google Scholar 

  • Siti AA, Yap YL (2014) Study the effect of vegetable-based lubricant on surface roughness during milling operation by using response surface methodology. Appl Mech Mater 336:548–549. doi:10.4028/www.scientific.net/AMM.548-549.336

    Google Scholar 

  • Villares A, Garcìa-Lafuente A, Guillamòn E, Ramos A (2012) Identification and quantification of ergosterol and phenolic compounds occurring in Tuber spp. Truffles. J Food Compos Anal 26:177–182. doi:10.1016/j.jfca.2011.12.003

    Article  CAS  Google Scholar 

  • Wang S, Marcone MF (2011) The biochemistry and biological properties of the world’s most expensive underground edible mushroom: Truffles. Food Res Int 44:2567–2581. doi:10.1016/j.foodres.2011.06.008

    Article  CAS  Google Scholar 

  • Xie J, Zhao Y (2003) Improvement of physicochemical and nutritional qualities of frozen Marioberry by vacuum impregnation pretreatment with cryoprotectants and minerals. J Hortic Sci Biotechnol 78:248–253

    CAS  Google Scholar 

  • Zhao Y, Xie J (2004) Practical applications of vacuum impregnation in fruit and vegetable processing. Trends Food Sci Technol 15:434–451. doi:10.1016/j.tifs.2004.01.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Severini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derossi, A., Iliceto, A., De Pilli, T. et al. Application of vacuum impregnation with anti-freezing proteins to improve the quality of truffles. J Food Sci Technol 52, 7200–7208 (2015). https://doi.org/10.1007/s13197-015-1843-y

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-1843-y

Keywords

Navigation