Skip to main content
Log in

The influence of different polymers on viability of Bifidobacterium lactis 300b during encapsulation, freeze-drying and storage

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Seven different types of natural polymers namely hydroxypropyl methylcellulose (HPMC), sodium-carboxymethyl cellulose (Na-CMC), microcrystalline cellulose (MCC), starch BR-07, starch BR-08, dextrin and pullulan were used in order to develop the optimal formula for the entrapment of Bifidobacterium lactis 300B in Ca-alginate based granules. Laminar flow drip casting with Brace-Encapsulator was used in order to prepare the granules. The results showed that alginate/pullulan and alginate/HPMC formulation provide high protection for the bacterial strain used for encapsulation. These two formulations were further used to obtain freeze dried granules, for which the viability in time and at different temperatures was tested. The final results showed a higher viability than the level of the therapeutic minimum (>107 CFU/g) after 15 days of storage. Other parameters like entrapment efficiency, production rate, sphericity, flowability were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullah EC, Geldart D (1999) The use of bulk density measurements as flowability indicators. Powder Technol 102(2):151–165

    Article  CAS  Google Scholar 

  • Albertini B, Vitali B, Passerini N, Cruciani F, Di Sabatino M, Rodriguez L, Brigidi P (2010) Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis. E J Pharm Sci 40(4):359–366

    Article  CAS  Google Scholar 

  • Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Tech 18(5):240–251

    Article  CAS  Google Scholar 

  • Anal AK, Stevens WF (2005) Chitosan-alginate multilayer beads for controlled release of ampicillin. Int J Pharm 290(1–2):45–54

    Article  CAS  Google Scholar 

  • Anal AK, Bhopatkar D, Tokura S, Tamura H, Stevens WF (2003) Chitosan-alginate multilayer beads for gastric passage and controlled intestinal release of protein. Drug Dev Ind Pharm 29(6):713–724

    Article  CAS  Google Scholar 

  • Aste T, Weaire D (2008) The pursuit of perfect packing, second edition, 2nd edn. Taylor and Francis group, Northwestern

    Book  Google Scholar 

  • Betoret E, Betoret N, Vidal D, Fito P (2011) Functional foods development: trends and technologies. Trends Food Sci Tech 22(9):498–508

    Article  CAS  Google Scholar 

  • Brandau T (2002) Preparation of monodisperse controlled release microcapsules. Int J Pharm 242:179–184

    Article  CAS  Google Scholar 

  • Brinques GB, Ayub MAZ (2011) Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. J Food Eng 103(2):123–128

    Article  CAS  Google Scholar 

  • Burgain J, Gaiani C, Linder M, Scher J (2011) Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J Food Eng 104(4):467–483

    Article  CAS  Google Scholar 

  • Capela P, Hay TKC, Shah NP (2006) Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res Int 39:203–211

    Article  CAS  Google Scholar 

  • Capela P, Hay TKC, Shah NP (2007) Effect of homogenisation on bead size and survival of encapsulated probiotic bacteria. Food Res Int 40(10):1261–1269

    Article  CAS  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2004) Relevant factors for the preparation of freezedried lactic acid bacteria. Int Dairy J 14:835–847

    Article  CAS  Google Scholar 

  • Chan E-S, Lim T-K, Voo W-P, Pogaku R, Tey BT, Zhang Z (2011a) Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology 9(3):228–234

    Article  CAS  Google Scholar 

  • Chan E-S, Wong S-L, Lee P-P, Lee J-S, Ti TB, Zhang Z, Poncelet D, Ravindra P, Phan S-H, Yim Z-H (2011b) Effects of starch filler on the physical properties of lyophilized calcium-alginate beads and the viability of encapsulated cells. Carbohydr Polym 83(1):225–232

    Article  CAS  Google Scholar 

  • Chandramouli V, Kailasapathy K, Peiris P, Jones M (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 56(1):27–35

    Article  CAS  Google Scholar 

  • Cheow WS, Hadinoto K (2013) Biofilm-like lactobacillus rhamnosus probiotics encapsulated in alginate and Carrageenan microcapsules exhibiting enhanced thermotolerance and freeze-drying resistance. Biomacromolecules 14(9):3214–3222

    Article  CAS  Google Scholar 

  • Cui J-H, Goh J-S, Kim P-H, Choi S-H, Lee B-J (2000) Survival and stability of bifidobacteria loaded in alginate poly-l-lysine microparticles. Int J Pharm 210(1–2):51–59

    Article  CAS  Google Scholar 

  • Dalmoro A, Barba AA, Lamberti G, Grassi M, d'Amore M (2012a) Pharmaceutical applications of biocompatible polymer blends containing sodium alginate. Adv Polym Tech 31(3):219–230

  • Dalmoro A, Barba AA, Lamberti G, d'Amore M (2012b) Intensifying the microencapsulation process: ultrasonic atomization as an innovative approach. Eur J Pharm Biopharm 80(3):471–477

  • Donati I, Holtan S, Morch YA, Borgogna M, Dentini M, Skjak-Braek G (2005) New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules 6(2):1031–1040

    Article  CAS  Google Scholar 

  • Endo A, Terasjarvi J, Salminen S (2014) Food matrices and cell conditions influence survival of Lactobacillus rhamnosus GG under heat stresses and during storage. Int J Food Microbiol 174:110–112

    Article  CAS  Google Scholar 

  • Goh CH, Heng PWS, Chan LW (2012) Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym 88(1):1–12

    Article  CAS  Google Scholar 

  • Grabnar PA, Kristl J (2011) The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers. J Microencapsul 28(4):323–335

    Article  CAS  Google Scholar 

  • Haros M, Bielecka M, Honke J, Sanz Y (2007) Myo-inositol hexakisphosphate degradation by Bifidobacterium infantis ATCC 15697. Int J Food Microbiol 117(1):76–84

    Article  CAS  Google Scholar 

  • Heidebach T, Forst P, Kulozik U (2009) Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hidrocolloid 23(7):1670–1677

    Article  CAS  Google Scholar 

  • Holleman AF, Wiberg E, Wiberg N (1985) Lehrbuch der Anorganischen Chemie (Inorganic Chemistry Manual). 91-100 edn. Walter de Gruyter,

  • Homayouni A, Azizi A, Ehsani MR, Yarmand MS, Razavi SH (2008) Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chem 111(1):50–55

    Article  CAS  Google Scholar 

  • Johnson JAC, Etzel MR (1995) Properties of Lactobacillus helveticus CNRZ-32 attenuated by spray-drying, freeze-drying, or freezing. J Dairy Sci 78(4):761–768

    Article  CAS  Google Scholar 

  • Jyothi NVN, Prasanna PM, Sakarkar SN, Surya Prabha K, Ramaiah PS, Srawan GY (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 27(3):187–197

  • Kennedy JF, Panesar PS (2006) C. Onwulata (Ed.), encapsulated and powdered foods, CRC press, Taylor and Francis group, Boca Raton, FL, USA, 2005. Carbohydr Polym 63(4):569

    Google Scholar 

  • Klayraung S, Viernstein H, Okonogi S (2009) Development of tablets containing probiotics: effects of formulation and processing parameters on bacterial viability. Int J Pharm 370(1–2):54–60

    Article  CAS  Google Scholar 

  • Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biot 62:468–473

    Article  CAS  Google Scholar 

  • Maa YF, Prestrelski SJ (2000) Biopharmaceutical powders: particle formation and formulation considerations. Curr Pharm Biotechnol 1(3):283–302

    Article  CAS  Google Scholar 

  • Maa YF, Nguyen P-A, Sweeney T, Shire SJ, Hsu CC (1999) Protein inhalation powders: spray drying vs spray freeze drying. Pharm Res 16(2):249–254

    Article  CAS  Google Scholar 

  • McMaster LD, Kokott SA, Reid SJ, Abratt VR (2005) Use of traditional African fermented beverages as delivery vehicles for Bifidobacterium lactis DSM 10140. Int J Food Microbiol 102(2):231–237

    Article  CAS  Google Scholar 

  • Nienaltowska K, Perfetti G, Meesters GMH, Ronsse F, Pieters JG, Dewettinck K, Depypere F (2010) Attrition strength of water-soluble cellulose derivatives coatings. Powder Technol 198(2):298–309

    Article  CAS  Google Scholar 

  • Nochos A, Douroumis D, Bouropoulos N (2008) In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads. Carbohydr Polym 74(3):451–457

    Article  CAS  Google Scholar 

  • Picot A, Lacroix C (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J 14(6):505–515

    Article  CAS  Google Scholar 

  • Prasanna PHP, Grandison AS, Charalampopoulos D (2014) Bifidobacteria in milk products: an overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Res Int 55:247–262

    Article  CAS  Google Scholar 

  • Rassis DK, Saguy IS, Nussinovitch A (2002) Collapse, shrinkage and structural changes in dried alginate gels containing fillers. Food Hidrocolloid 16(2):139–151

    Article  CAS  Google Scholar 

  • Rathore S, Desai PM, Liew CV, Chan LW, Heng PWS (2013) Microencapsulation of microbial cells. J Food Eng 116(2):369–381

    Article  CAS  Google Scholar 

  • Reid AA, Vuillemard JC, Britten M, Arcand Y, Farnworth E, Champagne CP (2005) Microentrapment of probiotic bacteria in a Ca(2+)-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model. J Microencapsul 22(6):603–619

  • Rodriguez-Huezo ME, Duran-Lugo R, Prado-Barragan LA, Cruz-Sosa F, Lobato-Calleros C, Alvarez-Ramirez J, Vernon-Carter EJ (2007) Pre-selection of protective colloids for enhanced viability of Bifidobacterium bifidum following spray-drying and storage, and evaluation of aguamiel as thermoprotective prebiotic. Food Res Int 40(10):1299–1306

    Article  CAS  Google Scholar 

  • Sandoval-Castilla O, Lobato-Calleros C, Garcia-Galindo HS, Alvarez-Ramirez J, Vernon-Carter EJ (2010) Textural properties of alginate-pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Res Int 43(1):111–117

    Article  CAS  Google Scholar 

  • Savard P, Lamarche B, Paradis M-E, Thiboutot H, Laurin E, Roy D (2011) Impact of Bifidobacterium animalis subsp. lactis BB-12 and, Lactobacillus acidophilus LA-5-containing yoghurt, on fecal bacterial counts of healthy adults. Int J Food Microbiol 149(1):50–57

    Article  CAS  Google Scholar 

  • Simpson PJ, Stanton C, Fitzgerald GF, Ross RP (2005) Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. J Appl Microbiol 99(3):493–501

    Article  CAS  Google Scholar 

  • Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73(4):515–531

    Article  CAS  Google Scholar 

  • Stanton C, Gardiner G, Meehan H, Collins K, Fitzgerald G, Lynch PB, Ross RP (2001) Market potential for probiotics. Am J Clin Nutr 73 (2):476S-483s

  • Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol 62(1–2):47–55

    Article  CAS  Google Scholar 

  • Tanghe A, Van Dijck P, Thevelein JM (2003) Determinants of Freeze Tolerance in Microorganisms, Physiological Importance, and Biotechnological Applications. In: Advances in Applied Microbiology, vol Volume 53. Academic Press, pp 129-176

  • Thalberg K, Lindholm D, Axelsson A (2004) Comparison of different flowability tests for powders for inhalation. Powder Technol 146(3):206–213

    Article  CAS  Google Scholar 

  • Vidhyalakshmi R, Bhakyaraj R, Subhasree RS (2009) Encapsulation “the future of probiotics”-a review. Advanced in Biological Research 3(3–4):96–103

    CAS  Google Scholar 

  • Weinbreck F, Bodnar I, Marco ML (2010) Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? Int J Food Microbiol 136(3):364–367

    Article  CAS  Google Scholar 

  • Zhang L, Huang S, Ananingsih VK, Zhou W, Chen XD (2014) A study on Bifidobacterium lactis Bb12 viability in bread during baking. J Food Eng 122:33–37

    Article  Google Scholar 

  • Zohar-Perez C, Chet I, Nussinovitch A (2004) Irregular textural features of dried alginate-filler beads. Food Hidrocolloid 18(2):249–258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out at Brace GmbH - Karlstein am Main, Germany. The authors would like to thank Dr. Holger Strohm and Mr. Manfred Stöckl for their helpful collaboration during the experimental work.

Declaration of interest

The authors declare that they have no conflicts of interest in concerning this article. This paper was published under the frame of European Social Fund, Human Resources Development Operational Programme 2007-2013, project no. POSDRU/159/1.5/S/132765. The authors are responsible for the content and writing of the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oana Lelia Pop or Carmen Socaciu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pop, O.L., Brandau, T., Schwinn, J. et al. The influence of different polymers on viability of Bifidobacterium lactis 300b during encapsulation, freeze-drying and storage. J Food Sci Technol 52, 4146–4155 (2015). https://doi.org/10.1007/s13197-014-1441-4

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1441-4

Keywords

Navigation