Skip to main content

Advertisement

Log in

Cancer Stem Cells: Formidable Allies of Cancer

  • REVIEW ARTICLE
  • Published:
Indian Journal of Surgical Oncology Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSC) represent the subpopulation of cells within a tumour showing two fundamental properties of stem cells – self-renewal (the ability to make more of their own kind) and differentiation (the ability to generate diverse cell types present within a tissue). The CSC hypothesis posits that CSCs play an important role in tumour initiation, maintenance and progression. Furthermore, owing to their intrinsic drug resistance, they remain refractory to currently used therapy, thereby contributing to tumour relapse. Thus, targeting or taming CSCs can lead to more effective cancer treatment in the coming decades. In this review, we will discuss about the origin of CSC hypothesis, evidence showing their existence, clinical relevance and translational significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Di Lonardo A, Nasi S, Pulciani S (2015) Cancer: we should not forget the past. J Cancer 6:29–39

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121(Suppl 1):1–84

    Article  PubMed  Google Scholar 

  3. Campbell LL, Polyak K (2007) Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6:2332–2338

    Article  CAS  PubMed  Google Scholar 

  4. Beck B, Blanpain C (2013) Unravelling cancer stem cell potential. Nat Rev Cancer 13:727–738

    Article  CAS  PubMed  Google Scholar 

  5. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138:822–829

    Article  CAS  PubMed  Google Scholar 

  6. Tang DG (2012) Understanding cancer stem cell heterogeneity and plasticity. Cell Res 22:457–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kreso A, O'Brien CA, van Galen P, Gan OI, Notta F, Brown AM, Ng K, Ma J, Wienholds E, Dunant C et al (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339:543–548

    Article  CAS  PubMed  Google Scholar 

  8. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, Phillips LA, Ma J, Minden MD, Downing JR, Dick JE (2011) Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 469:362–367

    Article  CAS  PubMed  Google Scholar 

  9. Morrison SJ, Weissman IL (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1:661–673

    Article  CAS  PubMed  Google Scholar 

  10. Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL (1997) Identification of a lineage of multipotent hematopoietic progenitors. Development 124:1929–1939

    CAS  PubMed  Google Scholar 

  11. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL (2003) Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21:759–806

    Article  CAS  PubMed  Google Scholar 

  12. Nibley WE, Spangrude GJ (1998) Primitive stem cells alone mediate rapid marrow recovery and multilineage engraftment after transplantation. Bone Marrow Transplant 21:345–354

    Article  CAS  PubMed  Google Scholar 

  13. Bruce WR, van der Gaag H (1963) A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199:79–80

    Article  CAS  PubMed  Google Scholar 

  14. Clarkson BD (1969) Review of recent studies of cellular proliferation in acute leukemia. Natl Cancer Inst Monogr 30:81–120

    CAS  PubMed  Google Scholar 

  15. Clarkson BD, Fried J, Chou TC, Strife A, Ferguson R, Sullivan S, Kitahara T, Oyama A (1977) Duration of the dormant state in an established cell line of human hematopoietic cells. Cancer Res 37:4506–4522

    CAS  PubMed  Google Scholar 

  16. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  17. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  19. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337

    Article  CAS  PubMed  Google Scholar 

  20. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin DT, Donahoe PK (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci U S A 103:11154–11159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  CAS  PubMed  Google Scholar 

  22. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    Article  CAS  PubMed  Google Scholar 

  23. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104:973–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    Article  CAS  PubMed  Google Scholar 

  25. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  CAS  PubMed  Google Scholar 

  26. Wu C, Wei Q, Utomo V, Nadesan P, Whetstone H, Kandel R, Wunder JS, Alman BA (2007) Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Res 67:8216–8222

    Article  CAS  PubMed  Google Scholar 

  27. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  CAS  Google Scholar 

  28. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    Article  CAS  PubMed  Google Scholar 

  29. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  CAS  PubMed  Google Scholar 

  30. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3, e2888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Guzman ML, Jordan CT (2004) Considerations for targeting malignant stem cells in leukemia. Cancer Control 11:97–104

    PubMed  Google Scholar 

  33. Rountree CB, Senadheera S, Mato JM, Crooks GM, Lu SC (2008) Expansion of liver cancer stem cells during aging in methionine adenosyltransferase 1A-deficient mice. Hepatology 47:1288–1297

    Article  CAS  PubMed  Google Scholar 

  34. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104:10158–10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, van der Kooy D (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19:387–393

    Article  CAS  PubMed  Google Scholar 

  36. Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1–13

    Article  CAS  PubMed  Google Scholar 

  37. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400

    Article  CAS  PubMed  Google Scholar 

  39. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    Article  CAS  PubMed  Google Scholar 

  40. Wang YJ, Bailey JM, Rovira M, Leach SD (2013) Sphere-forming assays for assessment of benign and malignant pancreatic stem cells. Methods Mol Biol 980:281–290

    Article  CAS  PubMed  Google Scholar 

  41. Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL, Liang R, Leung AY (2007) Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 21:1423–1430

    Article  CAS  PubMed  Google Scholar 

  42. Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ, Guan XY (2008) Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 6:1146–1153

    Article  CAS  PubMed  Google Scholar 

  43. Carpentino JE, Hynes MJ, Appelman HD, Zheng T, Steindler DA, Scott EW, Huang EH (2009) Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res 69:8208–8215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L, Wang H, Liu Z, Su Y, Stass SA et al (2009) Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res 7:330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boonyaratanakornkit JB, Yue L, Strachan LR, Scalapino KJ, LeBoit PE, Lu Y, Leong SP, Smith JE, Ghadially R (2010) Selection of tumorigenic melanoma cells using ALDH. J Invest Dermatol 130:2799–2808

    Article  CAS  PubMed  Google Scholar 

  46. Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, Wicha MS, Prince ME (2010) Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck 32:1195–1201

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li T, Su Y, Mei Y, Leng Q, Leng B, Liu Z, Stass SA, Jiang F (2010) ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Lab Invest 90:234–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Su Y, Qiu Q, Zhang X, Jiang Z, Leng Q, Liu Z, Stass SA, Jiang F (2010) Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev 19:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Todaro M, Iovino F, Eterno V, Cammareri P, Gambara G, Espina V, Gulotta G, Dieli F, Giordano S, De Maria R et al (2010) Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res 70:8874–8885

    Article  CAS  PubMed  Google Scholar 

  50. Rasper M, Schäfer A, Piontek G, Teufel J, Brockhoff G, Ringel F, Heindl S, Zimmer C, Schlegel J (2010) Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol 12:1024–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang L, Park P, Zhang H, La Marca F, Lin CY (2011) Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity. Int J Cancer 128:294–303

    Article  CAS  PubMed  Google Scholar 

  52. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    Article  CAS  PubMed  Google Scholar 

  53. Kim M, Turnquist H, Jackson J, Sgagias M, Yan Y, Gong M, Dean M, Sharp JG, Cowan K (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8:22–28

    CAS  PubMed  Google Scholar 

  54. Illa-Bochaca I, Fernandez-Gonzalez R, Shelton DN, Welm BE, Ortiz-de-Solorzano C, Barcellos-Hoff MH (2010) Limiting-dilution transplantation assays in mammary stem cell studies. Methods Mol Biol 621:29–47

    Article  CAS  PubMed  Google Scholar 

  55. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, Clevers H (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337:730–735

    Article  CAS  PubMed  Google Scholar 

  57. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C (2012) Defining the mode of tumour growth by clonal analysis. Nature 488:527–530

    Article  CAS  PubMed  Google Scholar 

  58. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J (2012) Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22:725–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ocaña OH, Córcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A, Nieto MA (2012) Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22:709–724

    Article  PubMed  CAS  Google Scholar 

  61. Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, Creasap N, Rosol TJ, Robinson ML, Eng C et al (2008) Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res 68:937–945

    Article  CAS  PubMed  Google Scholar 

  62. Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, Kirchner T (2005) Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179:56–65

    Article  CAS  PubMed  Google Scholar 

  63. Wang Z, Li Y, Kong D, Banerjee S, Ahmad A, Azmi AS, Ali S, Abbruzzese JL, Gallick GE, Sarkar FH (2009) Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 69:2400–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Niu RF, Zhang L, Xi GM, Wei XY, Yang Y, Shi YR, Hao XS (2007) Up-regulation of twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res 26:385–394

    CAS  PubMed  Google Scholar 

  65. Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22:396–403

    Article  CAS  PubMed  Google Scholar 

  66. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:4741–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K et al (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A 108:7950–7955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644

    Article  CAS  PubMed  Google Scholar 

  69. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58

    Article  CAS  PubMed  Google Scholar 

  70. Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99:507–512

    Article  CAS  PubMed  Google Scholar 

  71. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101:14228–14233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A 101:781–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Saxena M, Stephens MA, Pathak H, Rangarajan A (2011) Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis 2, e179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Feuerhake F, Sigg W, Höfter EA, Dimpfl T, Welsch U (2000) Immunohistochemical analysis of Bcl-2 and Bax expression in relation to cell turnover and epithelial differentiation markers in the non-lactating human mammary gland epithelium. Cell Tissue Res 299:47–58

    Article  CAS  PubMed  Google Scholar 

  75. Bourguignon LY, Spevak CC, Wong G, Xia W, Gilad E (2009) Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the Production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem 284:26533–26546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang T, Otevrel T, Gao Z, Ehrlich SM, Fields JZ, Boman BM (2001) Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 61:8664–8667

    CAS  PubMed  Google Scholar 

  77. Maugeri-Saccà M, Bartucci M, De Maria R (2012) DNA damage repair pathways in cancer stem cells. Mol Cancer Ther 11:1627–1636

    Article  PubMed  CAS  Google Scholar 

  78. Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol

  80. Anjomshoaa A, Nasri S, Humar B, McCall JL, Chatterjee A, Yoon HS, McNoe L, Black MA, Reeve AE (2009) Slow proliferation as a biological feature of colorectal cancer metastasis. Br J Cancer 101:822–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72:3585–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11:R7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Polyak K, Haviv I, Campbell IG (2009) Co-evolution of tumor cells and their microenvironment. Trends Genet 25:30–38

    Article  CAS  PubMed  Google Scholar 

  85. Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7:17–23

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121:3804–3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Quail DF, Taylor MJ, Postovit LM (2012) Microenvironmental regulation of cancer stem cell phenotypes. Curr Stem Cell Res Ther 7:197–216

    Article  CAS  PubMed  Google Scholar 

  88. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–482

    Article  CAS  PubMed  Google Scholar 

  89. Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, Jordan CT (2005) The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105:4163–4169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Maliyakkal N, Appadath Beeran A, Balaji SA, Udupa N, Ranganath Pai S, Rangarajan A (2015) Effects of Withania somnifera and Tinospora cordifolia extracts on the side population phenotype of human epithelial cancer cells: toward targeting multidrug resistance in cancer. Integr Cancer Ther 14:156–171

    Article  PubMed  Google Scholar 

  91. Kawasaki BT, Hurt EM, Mistree T, Farrar WL (2008) Targeting cancer stem cells with phytochemicals. Mol Interv 8:174–184

    Article  CAS  PubMed  Google Scholar 

  92. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174

    Article  PubMed  CAS  Google Scholar 

  93. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD, van Rooijen N, Weissman IL (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sagiv E, Starr A, Rozovski U, Khosravi R, Altevogt P, Wang T, Arber N (2008) Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering RNA. Cancer Res 68:2803–2812

    Article  CAS  PubMed  Google Scholar 

  95. Smith LM, Nesterova A, Ryan MC, Duniho S, Jonas M, Anderson M, Zabinski RF, Sutherland MK, Gerber HP, Van Orden KL et al (2008) CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer 99:100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mittapalli RK, Liu X, Adkins CE, Nounou MI, Bohn KA, Terrell TB, Qhattal HS, Geldenhuys WJ, Palmieri D, Steeg PS et al (2013) Paclitaxel-hyaluronic nanoconjugates prolong overall survival in a preclinical brain metastases of breast cancer model. Mol Cancer Ther 12:2389–2399

    Article  CAS  PubMed  Google Scholar 

  97. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B, Brisken C, Minucci S, Di Fiore PP, Pelicci PG (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138:1083–1095

    Article  CAS  PubMed  Google Scholar 

  98. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, Rowlands T, Egeblad M, Cowin P, Werb Z et al (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 100:15853–15858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu BY, McDermott SP, Khwaja SS, Alexander CM (2004) The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci U S A 101:4158–4163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, Wu H (2006) Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci U S A 103:1480–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, Haug JS, Rupp D, Porter-Westpfahl KS, Wiedemann LM et al (2006) PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441:518–522

    Article  CAS  PubMed  Google Scholar 

  102. Guo W, Lasky JL, Chang CJ, Mosessian S, Lewis X, Xiao Y, Yeh JE, Chen JY, Iruela-Arispe ML, Varella-Garcia M et al (2008) Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 453:529–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hill R, Wu H (2009) PTEN, stem cells, and cancer stem cells. J Biol Chem 284:11755–11759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, Clouthier SG, Wicha MS (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 7, e1000121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jiang J, Hui CC (2008) Hedgehog signaling in development and cancer. Dev Cell 15:801–812

    Article  CAS  PubMed  Google Scholar 

  107. Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P, Trussell C, Schmitt-Graeff A, Landwerlin K, Veelken H et al (2008) Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14:238–249

    Article  CAS  PubMed  Google Scholar 

  108. Clarke RB, Anderson E, Howell A, Potten CS (2003) Regulation of human breast epithelial stem cells. Cell Prolif 36(Suppl 1):45–58

    Article  CAS  PubMed  Google Scholar 

  109. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6:R605–R615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB (2010) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 70:709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sharma A, Paranjape AN, Rangarajan A, Dighe RR (2012) A monoclonal antibody against human Notch1 ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells. Mol Cancer Ther 11:77–86

    Article  CAS  PubMed  Google Scholar 

  112. Fischer M, Yen WC, Kapoun AM, Wang M, O’Young G, Lewicki J, Gurney A, Hoey T (2011) Anti-DLL4 inhibits growth and reduces tumor-initiating cell frequency in colorectal tumors with oncogenic KRAS mutations. Cancer Res 71:1520–1525

    Article  CAS  PubMed  Google Scholar 

  113. Li K, Li Y, Wu W, Gordon WR, Chang DW, Lu M, Scoggin S, Fu T, Vien L, Histen G et al (2008) Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem 283:8046–8054

    Article  CAS  PubMed  Google Scholar 

  114. Andersson ER, Lendahl U (2014) Therapeutic modulation of Notch signalling--are we there yet? Nat Rev Drug Discov 13:357–378

    Article  CAS  PubMed  Google Scholar 

  115. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, He H (2009) Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 5:2673–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Baud V, Karin M (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pradhan A, Lambert QT, Reuther GW (2007) Transformation of hematopoietic cells and activation of JAK2-V617F by IL-27R, a component of a heterodimeric type I cytokine receptor. Proc Natl Acad Sci U S A 104:18502–18507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Coni S, Infante P, Gulino A (2013) Control of stem cells and cancer stem cells by Hedgehog signaling: pharmacologic clues from pathway dissection. Biochem Pharmacol 85:623–628

    Article  CAS  PubMed  Google Scholar 

  119. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  CAS  PubMed  Google Scholar 

  120. Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev

  121. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123

    Article  CAS  PubMed  Google Scholar 

  122. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yu F, Deng H, Yao H, Liu Q, Su F, Song E (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29:4194–4204

    Article  CAS  PubMed  Google Scholar 

  124. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11:1487–1495

    Article  CAS  PubMed  Google Scholar 

  125. Weiler J, Hunziker J, Hall J (2006) Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 13:496–502

    Article  CAS  PubMed  Google Scholar 

  126. Prakash TP, Kawasaki AM, Wancewicz EV, Shen L, Monia BP, Ross BS, Bhat B, Manoharan M (2008) Comparing in vitro and in vivo activity of 2′-O-[2-(methylamino)-2-oxoethyl]- and 2′-O-methoxyethyl-modified antisense oligonucleotides. J Med Chem 51:2766–2776

    Article  CAS  PubMed  Google Scholar 

  127. Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S (2008) The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol 18:89–102

    Article  CAS  PubMed  Google Scholar 

  128. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  CAS  PubMed  Google Scholar 

  129. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R et al (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26:561–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. De Guire V, Caron M, Scott N, Ménard C, Gaumont-Leclerc MF, Chartrand P, Major F, Ferbeyre G (2010) Designing small multiple-target artificial RNAs. Nucleic Acids Res 38, e140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1981) Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41:1967–1972

    CAS  PubMed  Google Scholar 

  132. Khdair A, Chen D, Patil Y, Ma L, Dou QP, Shekhar MP, Panyam J (2010) Nanoparticlemediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J Control Release 141:137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Saeki T, Nomizu T, Toi M, Ito Y, Noguchi S, Kobayashi T, Asaga T, Minami H, Yamamoto N, Aogi K et al (2007) Dofequidar fumarate (MS-209) in combination with cyclophosphamide, doxorubicin, and fluorouracil for patients with advanced or recurrent breast cancer. J Clin Oncol 25:411–417

    Article  CAS  PubMed  Google Scholar 

  134. Minderman H, O'Loughlin KL, Pendyala L, Baer MR (2004) VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin Cancer Res 10:1826–1834

  135. Patil Y, Sadhukha T, Ma L, Panyam J (2009) Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 136:21–29

    Article  CAS  PubMed  Google Scholar 

  136. Ritchie TK, Kwon H, Atkins WM (2011) Conformational analysis of human ATP-binding cassette transporter ABCB1 in lipid nanodiscs and inhibition by the antibodies MRK16 and UIC2. J Biol Chem 286:39489–39496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11:265–283

    Article  CAS  PubMed  Google Scholar 

  138. Kolitz JE, George SL, Marcucci G, Vij R, Powell BL, Allen SL, DeAngelo DJ, Shea TC, Stock W, Baer MR et al (2010) P-glycoprotein inhibition using valspodar (PSC-833) does not improve outcomes for patients younger than age 60 years with newly diagnosed acute myeloid leukemia: cancer and Leukemia Group B study 19808. Blood 116:1413–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Thomas H, Coley HM (2003) Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10:159–165

    PubMed  Google Scholar 

  140. Sims-Mourtada J, Izzo JG, Ajani J, Chao KS (2007) Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene 26:5674–5679

    Article  CAS  PubMed  Google Scholar 

  141. Xu SN, Chen JP, Liu JP, Xia Y (2009) Arsenic trioxide in combination with all-trans retinoic acid for acute promyelocytic leukemia: a systematic review and meta-analysis. Zhong Xi Yi Jie He Xue Bao 7:1024–1034

    PubMed  Google Scholar 

  142. de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A (1991) The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66:675–684

    Article  PubMed  Google Scholar 

  143. Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VV, Dmitrovsky E, Evans RM (1991) Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 66:663–674

    Article  CAS  PubMed  Google Scholar 

  144. Waxman S (2000) Differentiation therapy in acute myelogenous leukemia (non-APL). Leukemia 14:491–496

    Article  CAS  PubMed  Google Scholar 

  145. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ipsa Jain, Mohini Lahiry and Saurav Kumar for useful discussions and critical inputs in writing this article. AR is currently a Wellcome Trust DBT India Alliance Senior Fellow. AR acknowledges funding from DBT to AR, and support from DBT-IISc partnership programme, DST-FIST, UGC to the Department of MRDG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annapoorni Rangarajan.

Glossary

Cancer stem cells (CSCs)

Are cancer cells that possess the abilities analogous to normal stem cells, specifically the ability to self-renew and to differentiate to give rise to the heterogeneous population within the tumour.

Cre recombinase and LoxP site

Cre-Lox technique is used to generate knock-in, knock-out or flipping of segments within genes. Cre recombinase is expressed conditionally within the cells where genetic modification is desired and it recognizes loxP sites placed around the desired gene to cause recombination. The orientation of the loxP site determines the outcome of the recombination event.

Differentiation

Is a cellular process by which cells commit to a particular fate, i.e. they commit to form a particular cell type within the organ having a distinct set of functions.

Epigenetics

Refers to the heritable changes in gene expression that does not involve changes to the DNA sequence; a change in phenotype without a change in the genotype. These changes generally occur at the level of chromatin organization.

Epithelial-mesenchymal transition (EMT)

Is a complex process by which epithelial cells lose their epithelial properties like cell-cell, cell-matrix adhesion, apico-basal polarity, etc. and acquire mesenchymal characteristics like migratory and invasive capabilities. The reverse process is called mesenchymal-epithelial transition (MET) by virtue of which mesenchymal cells acquire epithelial properties.

Fluorescence-activated cell sorting (FACS)

Is a flow cytometry technique that allows heterogeneous populations to be segregated based on the expression of cell surface markers that have been fluorescently labelled.

Invasion and metastasis cascade

Is a multi-step process by which epithelial cancer cells invade into the local surrounding, enter the vasculature, lodge at distant sites where they give rise to secondary/ metastatic tumours.

Mammosphere

3D spheroid structures formed when mammary tumour cells are subjected to suspension condition on long term culture (7–10 days).

Mutation

Is defined as a change in the nucleotide sequence of DNA, the genetic material in most organisms. Heritable mutations are called germline mutations whereas others which affect only the organism in which they occur are called somatic mutations.

NOD/SCID mouse

Non-obese diabetic SCID mouse; an immunodeficient mouse strain that lacks B, T lymphocytes as well as NK cells.

SCID mouse

Severe combined immunodeficiency mouse; an immunodeficient mouse strain that lacks B and T lymphocytes.

Self-renewal

Is the ability by which one stem cell can give rise to more cells of the same cell type.

Stem cells

Are undifferentiated cells within tissues that possess the ability to self-renew and to differentiate into other cell type of that tissue. They maintain tissue homeostasis.

Symmetric division

Produces two daughter cells having the same cellular fate. Asymmetric division produces two daughter cells with different cellular fates.

Tumorigenicity

Defines the ability of cells to seed/initiate new tumours. It is generally tested by subcutaneously/orthotopically injecting cells into immunocompromised mice and checking for tumour formation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshpande, N., Rangarajan, A. Cancer Stem Cells: Formidable Allies of Cancer. Indian J Surg Oncol 6, 400–414 (2015). https://doi.org/10.1007/s13193-015-0451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13193-015-0451-7

Keywords

Navigation