Skip to main content
Log in

Subordinated Brownian Motion: Last Time the Process Reaches its Supremum

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

The article develops a theory for the last time the subordinated Brownian motion (SBM with negative drift reaches its supremum. The study includes obtaining expressions for the Laplace transform of the last time that the SBM reaches its supremum and also for its density. In the process, we establish that the last time that the SBM reaches its supremum is a member of the generalized gamma convolution (GGC) family. The theoretical results for the general case have been explicitly derived for some well-known subordinators. Numerical investigations show close agreement between the theoretical derivations and empirical computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akahori, J. (1995). Some formulae for a new type of path-dependent option. Ann. Appl. Probab., 5, 383–388.

    Article  MATH  MathSciNet  Google Scholar 

  • Barndorff-Nielsen, O.E., Mikosch, T. and Resnick, S. I. (2001). Lévy processes: theory and applications. Birkhäuser, New York.

    Book  Google Scholar 

  • Baurdoux, E. and van Schaik, K. (2012) Predicting the time at which a Lévy process attains its supremum. Acta Applicandae Mathematicae (in press). arXiv:1207.476.

  • Bertoin, J. (1996). Lévy processes. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Bondesson, L. (1992). Generalized gamma convolutions and related classes of distributions and densities, lectures notes in statistics. Springer-Verlag, New York.

    Book  Google Scholar 

  • Borodin, A.N. and Salminen, P. (1996). Handbook of brownian motion-facts and formulae. Birkhäuser Verlag, Boston Berlin.

    Book  MATH  Google Scholar 

  • Buffet, E. (2003). On the maximum of Brownian motion with drift. J. Appl. Math. Stoch. Anal., 16, 201–207.

    Article  MATH  MathSciNet  Google Scholar 

  • Cifarelli, D.M. and Melilli, E. (2000). Some new results for Dirichlet priors. Ann. Stat., 28, 1390–1413.

    Article  MATH  MathSciNet  Google Scholar 

  • Cifarelli, D.M. and Regazzini, E. (1990). Distribution functions of means of a Dirichlet process. Ann. Stat., 18, 429–442.

    Article  MATH  MathSciNet  Google Scholar 

  • Dassios, A. (2005). On the quantiles of Brownian motion and their hitting times. Bernoulli, 11, 29–36.

    Article  MATH  MathSciNet  Google Scholar 

  • Du Toit, J. and Peskir, G. (2008) Predicting the Time of the Ultimate Maximum for Brownian Motion with Drift. In Proceedings of the Mathematical Control Theory and Finance. Springer, pp. 95–112.

  • Eberlein, E. (2001) Application of Hyperbolic Lévy motions to finance. In Lévy Processes: Theory and Applications (O.E. Barndorff-Nielsen, T. Mikosch and S. I. Resnick, eds.). Birkhäuser, pp. 319–336.

  • Gradshteyn, I.S. and Ryzhik, I.M. (2000). Tables of Integrals, Series and Products, 5th edn. Academic Press, New York.

    Google Scholar 

  • Graversen, S.E., Peskir, G. and Shiryaev, A.N. (2001). Stopping Brownian motion without anticipation as close as possible to its ultimate maximum. Theory Prob. Appl., 45, 125–136.

    Article  MathSciNet  Google Scholar 

  • James, L.F., Roynette, B. and Yor, M. (2008a). Generalized gamma convolutions, Dirichlet means, Thorin measures, with explicit examples. Probab. Surv., 5, 346–415.

    Article  MATH  MathSciNet  Google Scholar 

  • James, L.F., Ljioi, A. and Prünster, I. (2008b). Distributions of linear functionals of two parameter Poisson-Dirichlet random measures. Ann. Probab., 18, 521–551.

    Article  MATH  Google Scholar 

  • Karatzas, I. and Shreve, S.E (1988). Brownian motion and stochastic calculus. Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Kyprianou, A.E. (2006) Introductory Lectures on Fluctuation of Lévy Processes with Applications. Springer-Verlag.

  • Lijoi, A. and Prünster, I. (2009). Distributional properties of means of random probability measures. Stat. Surv., 3, 47–95.

    Article  MATH  MathSciNet  Google Scholar 

  • Mörters, P. and Peres, Y. (2010). Brownian motion. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Pecherskii, E.A. and Rogozin, B.A. (1969). On joint distributions of random variables associated with fluctuations of a process with independent increments. Theory Probab. Appl., 14, 410–423.

    Article  Google Scholar 

  • Samorodnitsky, G. and Taqqu, M.S. (1994). Stable Non-gaussian random processes. Chapman & Hall, New York, London.

    MATH  Google Scholar 

  • Sato, K. -I. (1999). Lévy processes and infinitely divisible distributions. University Press, Cambridge.

    MATH  Google Scholar 

  • Yano, K., Yano, Y. and Yor, M. (2009) On the laws of first hitting times of points for one-dimensional symmetric stable Levy processes. Seminaire de Probabilites XLII, Lecture Notes in Math. Springer, Berlin, pp. 187–227.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stergios B. Fotopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotopoulos, S.B., Jandhyala, V.K. & Luo, Y. Subordinated Brownian Motion: Last Time the Process Reaches its Supremum. Sankhya A 77, 46–64 (2015). https://doi.org/10.1007/s13171-014-0061-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-014-0061-4

Keywords and phrases

AMS (2000) subject classification

Navigation