Skip to main content
Log in

On the convergence of spectral approximations for the heat convection equations

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

In this paper, we focus on the convergence rate of solutions of spectral Galerkin approximations for the heat convection equations on a bounded domain. Estimates in \(H^2\)-norm for velocity and temperature without compatibility conditions are obtained. Moreover, we give rates of convergence for the velocity and temperature derivatives in \(L^ 2\)-norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche, C., Girault, V.: On the existence and regularity of the solution of Stokes problem in arbitrary dimension. Proc. Jpn Acad., 67(Ser. A), 171–175 (1991)

  2. Bause, M.: On optimal convergence rates for higher-order Navier-Stokes approximations. I. Error estimates for the spatial discretization. IMA J. Numer. Anal. 25, 812–841 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cannon, J.R., DiBenedetto, E.: The initial value problem for the Boussinesq equations with data in \(L^p,\) Approximation Methods for Navier-Stokes Equations. Springer Lect. Notes 771, 129–144 (1979)

  4. Cabrales, R.C., Poblete-Cantellano, M., Rojas-Medar, M.A.: Ecuaciones de Boussinesq: estimaciones uniformes en el tiempo de las aproximaciones de Galerkin espectrales. Revista Integración 27(1), 37–57 (2009)

    MathSciNet  Google Scholar 

  5. Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31, 308–340 (1961)

    MathSciNet  MATH  Google Scholar 

  6. Fujita, H., Kato, T.: On the Navier-Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hishida, T.: Existence and regularizing properties of solutions for the nonstationary convection problem. Funkcialy Ekvaciy 34, 449–474 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Heywood, J.G.: An error estimate uniform in time for spectral Galerkin approximations of the Navier-Stokes problem. P. J. Math. 96, 33–345 (1982)

    MathSciNet  MATH  Google Scholar 

  9. Heywood, J.G.: The Navier-Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 9, 639–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem I: regularity of solutions and second order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem II: stability of solutions and error estimates uniform in time. SIAM J. Numer. Anal. 23, 750–777 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem III: smoothing property and higher order error estimates for spatial discretizations. SIAM J. Numer. Anal. 25, 489–512 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

  14. Jörgens, K., Rellich, F.: Eigenwerttheorie gewöhnlicher Differentialgleichungen. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  15. Joseph, D.D.: Stability of fluid motion. Springer, Berlin (1976)

    Google Scholar 

  16. Ilyin, A.A.: On the spectrum of the Stokes operator. Funct. Anal. Appl. 43, 14–25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kiselev, A.A., Ladyzhenskaya, O.A.: On the existence and uniqueness of the solution of the nonstationary problem for a viscous incompressible fluid. Izv. Akad. Nauk. SSSR, Ser. Mat. 21, 655–680 (1957)

    MathSciNet  Google Scholar 

  18. Korenev, N.K.: On some problems of convection in a viscous incompressible fluid. Vestnik Leningrand Univ. math. 4, 125–137 (1977)

    Google Scholar 

  19. Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible fluid. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  20. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  21. Mikhailov, V.: Équations aux Dérivées Partielles. Mir, Moscow (1980)

    Google Scholar 

  22. Moretti, A.C., Rojas-Medar, M.A., Rojas-Medar, M.D.: The equations of a viscous incompressible chemically active fluid: existence and uniqueness of strong solutions in an unbounded domain. Comput. Math. Appl. 44(3–4), 287–299 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Morimoto, H.: On the existence of weak solutions of the equation of natural convection. J. Fac. Sci. Univ. Tokio, Sect. IA 36, 87–102 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Morimoto, H.: Nonstationary Boussinesq equations. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 39, 61–75 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Okamoto, H.: On the semidiscrete finite element approximations for the nonstationary Navier-Stokes equations. J. Fac. Sci. Univ. Tokyo IA 29, 613–652 (1982)

    MATH  Google Scholar 

  26. Rautmann, R.: On the convergence rate of nonstationary Navier-Stokes approximations, Proc. IUTAM Symp. 1979, Approx. Methods for Navier-Stokes problem. In: Rautmann, R. (ed.) Lect. Notes in Math, vol. 771, pp. 425–449. Springer, New York (1980)

  27. Rautmann, R.: On optimum regularity of Navier-Stokes solutions at time \(t=0\). Math. Z. 184, 141–149 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rautmann, R.: A semigroup approach to error estimates for nonstationary Navier-Stokes approximations. Methoden Verfahren Math. Physik 27, 63–77 (1983)

    MathSciNet  MATH  Google Scholar 

  29. Rautmann, R.: \(H^2\)-convergence of Rothe’s scheme to the Navier-Stokes equations. Nonlinear Anal. 24, 1081–1102 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rodríguez-Bellido, M.A., Rojas-Medar, M.A., Villamizar-Roa, E.J.: Periodic solutions in unbounded domains to the Boussinesq equations. Acta Math. Sinica. Engl. Ser. 26(5), 837–862 (2010)

    Article  MATH  Google Scholar 

  31. Rojas-Medar, M.A., Boldrini, J.L.: Spectral Galerkin approximations for the Navier-Stokes equations : uniform in time error estimates. Rev. Mat. Apl. 14, 63–74 (1993)

    MathSciNet  MATH  Google Scholar 

  32. Rojas-Medar, M.A., Lorca, S.A.: The equations of a viscous incompressible chemical active fluid I: uniqueness and existence of the local solutions. Rev. Mat. Apl. 16, 57–80 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Rojas-Medar, M.A., Lorca, S.A.: The equations of a viscous incompressible chemical active fluid I: regularity of solutions. Rev. Mat. Apl. 16, 81–95 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Rojas-Medar, M.A., Lorca, S.A.: Global strong solution of the equations for the motion of a chemical active fluid. Mat. Contemp. 8, 319–335 (1995)

    MathSciNet  MATH  Google Scholar 

  35. Rojas-Medar, M.A., Lorca, S.A.: An error estimate uniform in time for spectral Galerkin approximations for the equations for the motion of a chemical active fluid. Rev. Matemática de la Universidad Complutense de Madrid 8, 431–458 (1995)

    MathSciNet  MATH  Google Scholar 

  36. Rummler, B.: The eigenfunctions of the Stokes operator in special domains. I. ZAMM 77, 619–627 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rummler, B.: The eigenfunctions of the Stokes operator in special domains. II. ZAMM 77, 669–675 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Salvi, R.: Error estimates for spectral Galerkin approximations of the solutions of Navier-Stokes type equations. Glasgow Math. J. 31, 199–211 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shinbroth, M., Kotorynski, W.P.: The initial value problem for a viscous heat-conduting fluid. J. Math. Anal. Appl. 45, 1–22 (1974)

    Article  MathSciNet  Google Scholar 

  40. Sohr, H.: The Navier-Stokes Equations, an elementary functional analytic approach. Birkauser, Bassel (2001)

    MATH  Google Scholar 

  41. Temam, R.: Navier-Stokes equations, theory and numerical analysis, North-Holland, 2nd revised edn. Amsterdam (1979)

  42. Temam, R.: Behaviour at time \(t=0\) of the solutions of semi-linear evolution equations. J. Differ. Equations 43, 73–92 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vinogradova, P., Zarubin, A.: A study of Galerkin method for the heat convection equations. Appl. Math. Comput. 218, 520–531 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Climent-Ezquerra.

Additional information

MTM2012-12927, Spain. Universidad Atacama, project 221169 DIUDA 8/3. Fondecyt-Chile, Grant 1120260.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Climent-Ezquerra, B., Poblete-Cantellano, M. & Rojas-Medar, M.A. On the convergence of spectral approximations for the heat convection equations. Rev Mat Complut 29, 405–422 (2016). https://doi.org/10.1007/s13163-016-0189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-016-0189-y

Keywords

Mathematics Subject Classification

Navigation