Skip to main content
Log in

Integral isoperimetric transference and dimensionless Sobolev inequalities

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We introduce the concept of Gaussian integral isoperimetric transfer and show how it can be applied to obtain a new class of sharp Sobolev-Poincaré inequalities with constants independent of the dimension. In the special case of \(L^{q}\) spaces on the unit \(n\)-dimensional cube our results extend the recent inequalities that were obtained in Fiorenza et al. (2012) using extrapolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Dealing with a large number of variables (high dimensionality) gives rise to a set of specific problems and issues in analysis, e.g. in approximation theory, numerical analysis, optimization. (cf. [14]).

  2. As the associated space of the ‘grand’ Lebesgue spaces, introduced by Iwaniec and Sbordone [15].

  3. The basic fractional inequalities that underlie our analysis were obtained in [20].

  4. See Sect. 2 below; in particular we assume that \(I(t)\) is concave and symmetric about \(1/2.\)

  5. Precise definitions and properties of rearrangements and related topics coming into play in this section are contained in Sect. 2.

  6. as far as the condition on the left hand side (or target space).

  7. which of course is still weaker than the optimal inequality (1.6).

  8. For further possible metric measure spaces were one could consider applications of our method we refer to [24] and the very recent [25].

  9. Note that this notation is somewhat unconventional. In the literature it is common to denote the decreasing rearrangement of \(\left| u\right| \) by \(u_{\mu }^{*},\) while here it is denoted by \(\left| u\right| _{\mu }^{*}\) since we need to distinguish between the rearrangements of \(u\) and \(\left| u\right| .\) In particular, the rearrangement of \(u\) can be negative. We refer the reader to [27] and the references quoted therein for a complete treatment.

  10. In fact one can define \(\left| \nabla f\right| \) for functions \(f\) that are Lipschitz on every ball in \((\Omega ,d)\) (cf. [6, pp. 2, 3] for more details).

  11. This means that if \(f_{n}\ge 0,\) and \(f_{n}\uparrow f,\) then \(\left\| f_{n}\right\| _{X}\uparrow \left\| f\right\| _{X}\) (i.e. Fatou’s Lemma holds in the \(X\) norm).

  12. where if \(a=0\) we simply let \(Q:=\) \(Q_{0}\).

  13. Introduced by D. W. Boyd in [7].

  14. For a discussion of the extrapolation properties of a more general class of spaces we refer to [2].

  15. Let \(f\ \)be a measurable function, a real number \(med(f)\) will be called a median of \(f\) if

    $$\begin{aligned} \mu \left\{ f\ge med(f)\right\} \ge 1/2 \, \text {and }\mu \left\{ f\le med(f)\right\} \ge 1/2. \end{aligned}$$
  16. note that \(u_{\mu }^{*}(s)=u^{*}(\gamma _{n}s)\).

  17. Note that \(u_{\frac{dx_{n}}{\omega _{n}}}^{*}(s)=u_{dx_{n}}^{*}(\omega _{n}s)\).

References

  1. Alvino, A.: Sulla diseguaglianza di Sobolev in spazi di Lorentz. Boll. Un. Mat. Ital. 5(14–A), 148–156 (1977)

    MathSciNet  Google Scholar 

  2. Astashkin, S.V., Lykov, K.V.: Strong extrapolation spaces and interpolation. Siberian Math. J. 50, 199–213 (2009)

    Article  MathSciNet  Google Scholar 

  3. Barthe, F.: Log-concave and spherical models in isoperimetry. Geom. Funct. Anal. 12, 32–55 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. SpringerVerlag, Berlin-Heidelberg (1976)

    Book  MATH  Google Scholar 

  5. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)

    MATH  Google Scholar 

  6. Bobkov, S.G., Houdré, C.: Some connections between isoperimetric and Sobolev type inequalities. Mem. Amer. Math. Soc. 129, 616 (1997)

    Google Scholar 

  7. Boyd, D.W.: Indices of function spaces and their relationship to interpolation. Can. J. Math. 21, 1245–1254 (1969)

    Article  MATH  Google Scholar 

  8. Burago, Y.D., Mazja, V.G.: Certain questions of potential theory and function theory for regions with irregular boundaries. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 3, 152 (1967). (English translation: Potential theory and function theory for irregular regions. Seminars in Mathematics. Steklov, V.A. Mathematical Institute, Leningrad, Vol. 3, Consultants Bureau, New York, 1969)

    MathSciNet  Google Scholar 

  9. Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182, 307–332 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fiorenza, A.: Duality and reflexivity in grand Lebesgue spaces. Collect. Math. 51, 131–148 (2000)

    MATH  MathSciNet  Google Scholar 

  11. Fiorenza, A., Karadzhov, G.E.: Grand and Small Lebesgue Spaces and their analogs. Z. Anal. Anwendungen 23, 657–681 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fiorenza, A., Krbec, M., Schmeisser, H.J.: An improvement of dimension-free Sobolev imbeddings in r.i. spaces. J. Funct. Anal (2012) (to appear)

  13. Garsia, A., Rodemich, E.: Monotonicity of certain functionals under rearrangements. Ann. Inst. Fourier (Grenoble) 24, 67–116 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Griebel, M.: Sparse grids and related approximation schemes for higher dimensional problems. In: Pardo, L., Pinkus, A., Suli, E., Todd, M. (eds.) Foundations of Computational Mathematics (FoCM05), Santander, pp. 106–161. Cambridge University Press, Cambridge (2006)

    Chapter  Google Scholar 

  15. Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypotheses. Arch. Rational Mech. Anal. 119, 129–143 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Karadzhov, G.E., Milman, M.: Extrapolation theory: new results and applications. J. Approx. Theory 133, 38–99 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Krbec, M., Schmeisser, H.J.: On dimension-free Sobolev imbeddings I. J. Math. Anal. Appl. 387, 114–125 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Krbec, M., Schmeisser, H.J.: On dimension-free Sobolev imbeddings II. Rev. Mat. Complutense 25, 247–265 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Martin, J., Milman, M.: Pointwise symmetrization inequalities for Sobolev functions and applications. Adv. Math. 225, 121–199 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Martin, J., Milman, M.: Fractional Sobolev inequalities: symmetrization, isoperimetry and interpolation (2012)

  21. Martin, J., Milman, M.: Sobolev inequalities, rearrangements, isoperimetry and interpolation spaces. Contemp. Math. 545, 167–193 (2011)

    Article  MathSciNet  Google Scholar 

  22. Martin, J., Milman, M., Pustylnik, E.: Sobolev inequalities: symmetrization and self improvement via truncation. J. Funct. Anal. 252, 677–695 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Maz’ya, V.G.: Sobolev Spaces. Springer-Verlag, New York (1985)

    Google Scholar 

  24. Milman, E.: A converse to the Maz’ya inequality for capacities under curvature lower bound. In: Laptev, A. (ed.) Around the Research of Vladimir Maz’ya I: Function Spaces, pp. 321–348. Springer, New York (2010)

    Chapter  Google Scholar 

  25. Milman, E., Rotem, L.: Complemented Brunn-Minkowski Inequalities and Isoperimetry for Homogeneous and Non-Homogeneous Measures ( arXiv:1308.5695)

  26. Milman, M.: The computation of the \(K\)-functional for couples of rearrangement invariant spaces. Results Math. 5, 174–176 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rakotoson, J.M., Simon, B.: Relative Rearrangement on a finite measure space spplication to the regularity of weighted monotone rearrangement (Part 1). Rev. R. Acad. Cienc. Exact. Fis. Nat. 91, 17–31 (1997)

    MATH  MathSciNet  Google Scholar 

  28. Ros, A.: The isoperimetric problem. In: Global Theory of Minimal Surfaces. Clay Math. Proc. vol. 2, pp. 175–209. Am. Math. Soc., Providence (2005)

  29. Talenti, G.: Best constant in Sobolev inequality. Ann. Math. Pura Appl. 110, 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  30. Triebel, H.: Tractable Embeddings of Besov Spaces into Zygmund Spaces, Function Spaces, vol. IX, pp 361–377. Banach Center Publ. 92, Polish Acad. Sci. Inst. Math., Warsaw (2011)

  31. Triebel, H.: Tractable Embeddings. University of Jena, Jena (2012)

    Google Scholar 

Download references

Acknowledgments

We are very grateful to the referees for their comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Milman.

Additional information

J. Martín partially supported in part by Grants MTM2010-14946, MTM-2010-16232. M. Milman work was partially supported by a Grant from the Simons Foundation (#207929 to Mario Milman).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín, J., Milman, M. Integral isoperimetric transference and dimensionless Sobolev inequalities. Rev Mat Complut 28, 359–392 (2015). https://doi.org/10.1007/s13163-014-0153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-014-0153-7

Keywords

Mathematics Subject Classification (2000)

Navigation