Skip to main content
Log in

Manifolds with holonomy \(U^*(2m)\)

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We consider the geometry determined by a torsion-free affine connection whose holonomy lies in the subgroup \(U^*(2m)\), a real form of \(GL(2m,\mathbf {C})\), otherwise denoted by \(SL(m,\mathbf {H}) \cdot U(1)\). We show in particular how examples may be generated from quaternionic Kähler or hyperkähler manifolds with a circle action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D.V., Cortes, V., Dyckmanns, M., Mohaupt, T.: Quaternionic Kähler metrics associated with special Kähler manifolds, arXiv:1305.3549

  2. Barberis, M.L., Dotti, I.G., Verbitsky, M.: Canonical bundles of complex nilmanifolds, with applications to hypercomplex geometry. Math. Res. Lett. 16, 331–347 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Battaglia, F.: Circle actions and Morse theory on quaternion-Kähler manifolds. J. Lond. Math. Soc. 59, 345–358 (1999)

    Article  MathSciNet  Google Scholar 

  4. Berger, M.: Sur les groupes d’holonomie homogeńes de variétés á connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)

    MATH  MathSciNet  Google Scholar 

  5. Calabi, E.: Métriques kählériennes et fibrés holomorphes. Ann. Sci. Éc. Norm. Sup. 12, 269–294 (1979)

    MathSciNet  Google Scholar 

  6. Cortes, V., Louis, J., Smyth, P., Triendl, H.: On certain Kähler quotients of quaternionic Kähler manifolds. Commun. Math. Phys. 317, 787–816 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dunajski, M., Tod, K.P.: Four-dimensional metrics conformal to Kähler. Math. Proc. Camb. Philos. Soc. 148, 485–503 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Galicki, K., Lawson, H.B.: Quaternionic reduction and quaternionic orbifolds. Math. Ann. 282, 1–21 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Haydys, A.: Hyperkähler and quaternionic Kähler manifolds with \(S^1\)-symmetries. J. Geom. Phys. 58, 293–306 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Graduate studies in mathematics 34. American Mathematical Society, Providence (2001)

    Google Scholar 

  11. Hitchin, N.J., Karlhede, A., Lindström, U., Roček, M.: Hyperkähler metrics and supersymmetry. Commun. Math. Phys. 108, 535–589 (1987)

    Article  MATH  Google Scholar 

  12. Hitchin, N.J.: Riemannian topology and geometric structures on manifolds. In: Galicki, K., Simanca, S.R. (eds.) Quaternionic Kähler moduli spaces. Progress in mathematics, pp. 49–61. Birkhäuser, Basel (2008)

    Google Scholar 

  13. Hitchin, N.J.: On the hyperkähler/quaternion Kähler correspondence. Commun. Math. Phys. 324, 77–106 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Joyce, D.: The hypercomplex quotient and the quaternionic quotient. Math. Ann. 290, 323–340 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kim, J., LeBrun, C., Pontecorvo, M.: Scalar-flat Kähler surfaces of all genera. J. Reine Angew. Math. 486, 69–95 (1997)

    MATH  MathSciNet  Google Scholar 

  16. Kobayashi, S.: Differential geometry of complex vector bundles. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  17. Merkulov, S.A., Schwachhöfer, L.J.: Classification of irreducible holonomies of torsion-free affine connections. Ann. Math. 150, 77–149 (1999). (Addendum, Ann. Math. 1177–1179)

    Article  MATH  Google Scholar 

  18. O’Grady, K.: Desingularized moduli spaces of sheaves on a K3. J. Reine Angew. Math. 512, 49–117 (1999)

    MATH  MathSciNet  Google Scholar 

  19. Pontecorvo, M.: On twistor spaces of anti-self-dual Hermitian surfaces. Trans. Am. Math. Soc. 331, 653–661 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pontecorvo, M.: Complex structures on quaternionic manifolds. Diff. Geom. Appl. 4, 163–177 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Salamon, S.: Differential geometry of quaternionic manifolds. Ann. Sci. Ecole Norm. Sup. 19, 31–55 (1986)

    MATH  MathSciNet  Google Scholar 

  22. Swann, A.: Hyperkähler and quaternionic Kähler geometry. Math. Ann. 289, 421–450 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Swann, A.: Twisting Hermitian and hypercomplex geometries. Duke Math. J. 155, 403–431 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tod, K.P.: Geometry and physics (Aarhus, 1995). In: Andersen, J.E. (ed.) The \(SU(\infty )\)-Toda field equation and special four-dimensional metrics. Lecture notes in pure and applied mathematics, pp. 312–317. Dekker, New York (1997)

    Google Scholar 

  25. Ueno, K.: Classification theory of algebraic varieties and compact complex spaces. Lecture notes in mathematics. Springer, New York (1975)

    MATH  Google Scholar 

  26. Verbitsky, M.: Hypercomplex structures on Kähler manifolds. Geom. Funct. Anal. 15, 1275–1283 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel Hitchin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hitchin, N. Manifolds with holonomy \(U^*(2m)\) . Rev Mat Complut 27, 351–368 (2014). https://doi.org/10.1007/s13163-014-0150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-014-0150-x

Keywords

Mathematics Subject Classification (2010)

Navigation