Skip to main content
Log in

The limit as \(p\rightarrow \infty \) for the eigenvalue problem of the 1-homogeneous \(p\)-Laplacian

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

In this paper we study asymptotics as \(p\rightarrow \infty \) of the Dirichlet eigenvalue problem for the \(1\)-homogeneous \(p\)-Laplacian, that is,

$$\begin{aligned} \left\{ \begin{array}{ll} -\frac{1}{p} |D u|^{2-p}\mathrm{div}\,(|D u|^{p-2}Du)=\lambda u, &{}\text{ in }\;\Omega ,\\ u=0,&{}\text{ on }\;\partial \Omega . \end{array}\right. \end{aligned}$$

Here \(\Omega \) is a bounded starshaped domain in \(\mathbb{R }^n\) and \(p>n\). There exists a principal eigenvalue \(\lambda _{1,p} (\Omega )\), which is positive, and has associated a non-negative nontrivial eigenfunction. Moreover, we show that \(\lim _{p\rightarrow \infty }\lambda _{1,p}(\Omega )= \lambda _{1,\infty }(\Omega ) \), where \(\lambda _{1,\infty }(\Omega )\) is the first eigenvalue corresponding to the \(1\)-homogeneous infinity Laplacian, that is, \( -\left( D^2u\frac{Du}{|Du|}\right) \cdot \frac{Du}{|Du|} =\lambda u\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aronsson, G., Crandall, M.G., Juutinen, P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. 41, 439–505 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barles, G., Busca, J.: Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Comm. Partial Differ. Equ. 26, 2323–2337 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Comm. Pure Appl. Math. 47, 47–92 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Birindelli, I., Demengel, F.: First eigenvalue and maximum principle for fully nonlinear singular operators. Adv. Differ. Equ. 11(1), 91–119 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Birindelli, I., Demengel, F.: Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Commun. Pure Appl. Anal. 6(2), 335–366 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Charro, F., De Philippis, G., Di Castro, A., Máximo, D.: On the Aleksandrov-Bakelman- Pucci estimate for the infinity Laplacian. Calc. Var. PDE. (2013, to appear)

  7. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Giga, Y.: Surface evolution equations. A level set approach. In: Monographs in Mathematics, vol. 99, Birkhäuser, Basel (2006)

  9. Jensen, R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123, 51–74 (1993)

    Article  MATH  Google Scholar 

  10. Juutinen, P.: Principal eigenvalue of a very badly degenerate operator and applications. J. Differ. Equ. 236, 532–550 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Juutinen, P., Lindqvist, P., Manfredi, J.J.: On the equivalence of viscosity solutions and weak solutions for a quasi-linear elliptic equation. SIAM J. Math. Anal. 33, 699–717 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Juutinen, P., Lindqvist, P., Manfredi, J.J.: The \(\infty \)-eigenvalue problem. Arch. Ration. Mech. Anal. 148, 89–105 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Leoni, G.: A first course in Sobolev spaces. In: Graduate Studies in Mathematics, vol. 105. American Mathematical Society, New York (2009)

  14. Manfredi, J.J., Parviainen, M., Rossi, J.D.: An asymptotic mean value characterization of \(p\)-harmonic functions. Proc. Am. Math. Soc. 138, 881–889 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Manfredi, J.J., Parviainen, M., Rossi, J.D.: On the definition and properties of \(p\)-harmonious functions. Ann. Scuola Normale Sup. Pisa. XI(2), 215–241 (2012)

  16. Martínez-Aparicio, P. J., Pérez-Llanos, M., Rossi, J. D.: The sublinear problem for the 1-homogeneous \(p\)-Laplacian. Proc. Amer. Math. Soc. (to appear)

  17. Peres, Y., Pete, G., Somersielle, S.: Biased Tug-of-War, the biased infinity Laplacian and comparison with exponential cones. Calc. Var. PDE 38, 541–564 (2010)

    Article  MATH  Google Scholar 

  18. Peres, Y., Schramm, O., Sheffield, S., Wilson, D.: Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22, 167–210 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Peres, Y., Sheffield, S.: Tug-of-war with noise: a game theoretic view of the \(p\)-Laplacian. Duke Math. J. 145(1), 91–120 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank to J. García-Azorero for his useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio D. Rossi.

Additional information

P. J. Martínez-Aparicio supported by MICINN Ministerio de Ciencia e Innovación (Spain) MTM2012- 31799 and Junta de Andalucía FQM-116. M. Pérez-Llanos and J. D. Rossi supported by project MTM2010-18128 (Spain).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Aparicio, P.J., Pérez-Llanos, M. & Rossi, J.D. The limit as \(p\rightarrow \infty \) for the eigenvalue problem of the 1-homogeneous \(p\)-Laplacian. Rev Mat Complut 27, 241–258 (2014). https://doi.org/10.1007/s13163-013-0124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-013-0124-4

Keywords

Mathematics Subject Classification (2010)

Navigation