Skip to main content
Log in

Locally optimal and heavy ball GMRES methods

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The restarted GMRES (REGMRES) is one of the well used Krylov subspace methods for solving linear systems. However, the price to pay for the restart usually is slower speed of convergence. In this paper, we draw inspirations from the locally optimal CG and the heavy ball methods in optimization to propose two variants of the restarted GMRES that can overcome the slow convergence. Compared to various existing hybrid GMRES which are also designed to speed up REGMRES and which usually require eigen-region estimations, our variants preserve the appealing feature of GMRES and REGMRES—their simplicity. Numerical tests on real data are presented to demonstrate the superiority of the new methods over REGMRES and its variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A (square or rectangular) matrix X is upper-Hessenberg if \(X_{(i,j)}=0\) for all \(i>j+1\).

  2. For the non-generic case, GMRES—Algorithm 1 will yield the exact solution.

References

  1. Bai, Z., Li, R.-C.: Minimization principle for linear response eigenvalue problem, I: theory. SIAM J. Matrix Anal. Appl. 33(4), 1075–1100 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, Z., Li, R.-C.: Minimization principles for the linear response eigenvalue problem II: computation. SIAM J. Matrix Anal. Appl. 34(2), 392–416 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, Z., Li, R.-C.: Minimization principles and computation for the generalized linear response eigenvalue problem. BIT Numer. Math. 54(1), 31–54 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Davis, T., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1:1–1:25 (2011)

    MathSciNet  Google Scholar 

  5. Driscoll, Tobin A., Toh, Kim-Chuan, Trefethen, Lloyd N.: From potential theory to matrix iterations in six steps. SIAM Rev. 40(3), 547–578 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Elman, H.C.: Iterative methods for large, sparse nonsymmetric systems of linear equations. Ph.D. thesis, Department of Computer Science, Yale University (1982)

  7. Elman, H.C., Saad, Y., Saylor, P.E.: A hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems of linear equations. SIAM J. Sci. Stat. Comput. 7(3), 840–855 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elman, H.C., Streit, R.L.: Polynomial iteration for nonsymmetric indefinite linear systems. In: Hennart, J.-P. (ed.) Numerical Analysis. Lecture Notes in Mathematics, vol. 1230, pp. 103–117. Springer, Berlin Heidelberg (1986)

  9. Ernst, Oliver G.: Residual-minimizing Krylov subspace methods for stabilized discretizations of convection–diffusion equations. SIAM J. Matrix Anal. Appl. 21(4), 1079–1101 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Golub, G., Ye, Q.: An inverse free preconditioned Krylov subspace methods for symmetric eigenvalue problems. SIAM J. Sci. Comput. 24, 312–334 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  12. Imakura, A., Li, R.-C., Zhang, S.-L.: Locally optimal and heavy ball GMRES methods. Technical Report 2015-02, Department of Mathematics, University of Texas at Arlington. http://www.uta.edu/math/preprint/. Accessed Jan 2015

  13. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, R.-C.: Rayleigh quotient based optimization methods for eigenvalue problems. In: Bai, Z., Gao, W., Su, Y (eds.) Matrix Functions and Matrix Equations, Series in Contemporary Applied Mathematics, vol. 19. Lecture summary for 2013 Gene Golub SIAM Summer School, 22 July to 2 August 2013, Fudan University, Shanghai, China. World Scientific, Singapore (2015)

  15. Li, R.-C., Zhang, W.: The rate of convergence of GMRES on a tridiagonal Toeplitz linear system. Numer. Math. 112, 267–293 (2009). (published online 19 December 2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liang, X., Li, R.-C.: The hyperbolic quadratic eigenvalue problem. Technical Report 2014-01, Department of Mathematics, University of Texas at Arlington. http://www.uta.edu/math/preprint/. Accessed Jan 2014

  17. Liesen, J., Strakoš, Z.: Convergence of GMRES for tridiagonal Toeplitz matrices. SIAM J. Matrix Anal. Appl. 26(1), 233–251 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liesen, J., Strakoš, Z.: Krylov Subspace Methods: Principles and Analysis. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  19. Manteuffel, T.A.: Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration. Numer. Math. 31(2), 183–208 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Money, J., Ye, Q.: EIGIFP: a MATLAB program for solving large symmetric generalized eigenvalue problems. ACM Trans. Math. Softw. 31, 270–279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Morgan, R.: A restarted GMRES method augmented with eigenvectors. SIAM J. Matrix Anal. Appl. 16(4), 1154–1171 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Morgan, R.: GMRES with deflated restarting. SIAM J. Sci. Comput. 24(1), 20–37 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nachtigal, N.M., Reichel, L., Trefethen, L.N.: A hybrid GMRES algorithm for nonsymmetric linear systems. SIAM J. Matrix Anal. Appl. 13(3), 796–825 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)

    MATH  Google Scholar 

  25. Quillen, P., Ye, Qiang: A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. J. Comput. Appl. Math. 233(5), 1298–1313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saad, Y.: Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems. SIAM J. Numer. Anal. 24(1), 155–169 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996)

    MATH  Google Scholar 

  28. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  29. Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Smolarski, D.C., Saylor, P.E.: An optimum iterative method for solving any linear system with a square matrix. BIT 28(1), 163–178 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Takahashi, I.: A note on the conjugate gradient method. Inform. Process. Jpn. 5, 45–49 (1965)

    MathSciNet  MATH  Google Scholar 

  32. Yang, C., Meza, J.C., Lee, B., Wang, L.-W.: KSSOLV—a MATLAB toolbox for solving the Kohn–Sham equations. ACM Trans. Math. Softw. 36(2), 1–35 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to an anonymous referee for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Imakura.

Additional information

Supported in part by Strategic Programs for Innovative Research (SPIRE) Field 5 “The origin of matter and the universe”, JSPS Grants-in-Aid for Scientific Research (Nos. 25870099, 25286097), MEXT Grants-in-Aid for Scientific Research (No. 22104004), NSF grants DMS-1115834 and DMS-1317330, NSF CCF-1527104 a Research Gift Grant from Intel Corporation, and NSFC Grant 11428104.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imakura, A., Li, RC. & Zhang, SL. Locally optimal and heavy ball GMRES methods. Japan J. Indust. Appl. Math. 33, 471–499 (2016). https://doi.org/10.1007/s13160-016-0220-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-016-0220-1

Keywords

Mathematics Subject Classification

Navigation