Skip to main content
Log in

Computing knapsack solutions with cardinality robustness

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the robustness over the cardinality variation for the knapsack problem. For the knapsack problem and a positive number α ≤ 1, we say that a feasible solution is α-robust if, for any positive integer k, it includes an α-approximation of the maximum k-knapsack solution, where a k-knapsack solution is a feasible solution that consists of at most k items. In this paper, we show that, for any \({\varepsilon >0 }\) , the problem of deciding whether the knapsack problem admits a \({(\nu+\varepsilon)}\) -robust solution is weakly NP-hard, where ν denotes the rank quotient of the corresponding knapsack system. Since the knapsack problem always admits a ν-robust knapsack solution, this result provides a sharp border for the complexity of the robust knapsack problem. On the positive side, we show that a max-robust knapsack solution can be computed in pseudo-polynomial time, and present a fully polynomial-time approximation scheme (FPTAS) for computing a max-robust knapsack solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aissi H., Bazgan C., Vanderpooten D.: Min–max and min–max regret versions of combinatorial optimization problems: a survey. Eur. J. Oper. Res. 197, 427–438 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Tal A., El Ghaoui L., Nemirovski A.: Robust Optimization. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  3. Caprara A., Kellerer H., Pferschy U., Pisinger D.: Approximation algorithms for knapsack problems with cardinality constraints. Eur. J. Oper. Res. 123, 333–345 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dantzig G.B.: Discrete-variable extremum problems. Oper. Res. 5(2), 266–277 (1957)

    Article  MathSciNet  Google Scholar 

  5. Edmonds J.: Matroids and the greedy algorithm. Math. Progr. 1, 127–136 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fujita, R., Kobayashi, Y., Makino, K.: Robust matchings and matroid intersections. Lecture Notes in Computer Science, vol. 6347 (ESA 2010). Springer, Berlin, pp. 123–134 (2010)

  7. Fukunaga, T., Halldórsson, M., Nagamochi, H.: Robust cost colorings. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 1204–1212 (2008)

  8. Garey M.R., Johnson D.E.: Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  9. Hassin R., Rubinstein S.: Robust matchings. SIAM J. Discret. Math. 15, 530–537 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hassin R., Segev D.: Robust subgraphs for trees and paths. ACM Trans. Algorithms 2, 263–281 (2006)

    Article  MathSciNet  Google Scholar 

  11. Ibarra O.H., Kim C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22(4), 463–468 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jenkyns, T.A.: The efficacy of the “greedy” algorithm. In: Proceedings of the 7th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 341–350 (1976)

  13. Kakimura, N., Makino, K.: Robust independence systems. Lecture Notes in Computer Science, vol. 6755 (ICALP 2011), pp. 367–378 (2011) See also Mathematical Engineering Technical Reports METR 2011-14, University of Tokyo (2011)

  14. Kakimura, N., Makino, K., Seimi, K.: Computing Knapsack Solutions with Cardinality Robustness. In: Proceedings of the 22nd International Symposium on Algorithms and Computation (ISAAC 2011). Lecture Notes in Computer Science, vol. 7074, pp. 693–702 (2011)

  15. Kellerer H., Pferschy U.: A new fully polynomial approximation scheme for the knapsack problem. J. Comb. Optim. 3, 59–71 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kellerer H., Pferschy U., Pisinger D.: Knapsack Problems. Springer, Berlin (2004)

    MATH  Google Scholar 

  17. Korte B., Hausmann D.: An analysis of the greedy heuristic for independence systems. Ann. Discret. Math. 2, 65–74 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Non-Convex Optimization and Its Applications, 1st edn. Kluwer Academic Publishers, Dordrecht (1997)

  19. Lawler E.G.: Fast approximation algorithms for knapsack problems. Math. Oper. Res. 4, 339–356 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin G., Nagarajan C., Rajarama R., Williamson D.: A general approach for incremental approximation and hierarchical clustering. SIAM J. Comput. 39, 3633–3669 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Magazine M.J., Oguz O.: A fully polynomial approximation algorithm for the 0−1 knapsack problem. Eur. J. Oper. Res. 8, 270–273 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mettu R.R., Plaxton C.G.: The online median problem. SIAM J. Comput. 32, 816–832 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pisinger, D., Toth, P.: Knapsack Problems. In: Handbook of Combinatorial Optimization. Kluwer, Norwell, pp. 1–89 (1998)

  24. Rado R.: Note on independence relations. Proc. Lond. Math. Soc. 7, 300–320 (1957)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naonori Kakimura.

Additional information

A preliminary version appears in Proceedings of the 22nd International Symposium on Algorithms and Computation (ISAAC 2011) [14].

About this article

Cite this article

Kakimura, N., Makino, K. & Seimi, K. Computing knapsack solutions with cardinality robustness. Japan J. Indust. Appl. Math. 29, 469–483 (2012). https://doi.org/10.1007/s13160-012-0075-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-012-0075-z

Keywords

Mathematics Subject Classification

Navigation