Skip to main content

Advertisement

Log in

Greenhouse Gas Emission and Balance of Marshes at the Southern North Sea Coast

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Environmental parameters controlling fluxes of greenhouse gases (GHG) differ spatially within landscapes. This study aimed to improve the understanding of landscape processes controlling GHG-fluxes of different landscape units of marshes (in terms of vegetation, land use and seawater inflow) at the Southern North Sea coast. For this emissions of methane (CH4) and nitrous oxide (N2O) were quantified and related to reported carbon sequestration rates. Ancillary environmental parameters were determined to identify controlling factors and thresholds enabling GHG emissions. For inland marshes (enclosed by embankments) the water level was the predominant factor controlling CH4 emissions ranging between 1.58 and 1544.70 kg CH4 ha−1 a−1. The duration of threshold (10 cm below surface) exceedance was found as a predictor for annual CH4 emissions. Emissions of outland marshes (influenced by tides) varying from −1.34 to 55.14 kg CH4 ha−1 a−1 were predominantly controlled by sulphate (\( \mathsf{S}{\mathsf{O}}_{\mathsf{4}}^{\mathsf{2}\hbox{-} } \)) concentrations, because soil CH4-contents were negligible when soil \( \mathsf{S}{\mathsf{O}}_{\mathsf{4}}^{\mathsf{2}\hbox{-} } \)-contents exceeded 0.5 mg g−1. The variability of the N2O-fluxes (−0.81 to 17.78 kg N2O ha−1 a−1) could not be explained by the collected environmental parameters. GHG balances indicated that inland extensive grasslands and particularly reed stands are net sources of CO2-equivalents (100 year time horizon), while outlands are natural sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adam P (1990) Saltmarsh ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Baggs EM (2008) A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Communications in Mass Spectrometry 22:1664–1672

    Article  CAS  PubMed  Google Scholar 

  • Barnes RO, Goldberg ED (1976) Methane production and consumption in anoxic marine sediments. Geology 4:297–300

    Article  CAS  Google Scholar 

  • Bartlett KB, Harriss RC (1993) Review and assessement of methane emissions from wetlands. Chemosphere 26:261–320

    Article  CAS  Google Scholar 

  • Bartlett KB, Bartlett DS, Harriss RC, Sebacher DI (1987) Methane emissions along a salt marsh salinity gradient. Biogeochemistry 4:183–202

    Article  CAS  Google Scholar 

  • Beetz S, Liebersbach H, Glatzel S, Jurasinski G, Buczko U, Höper H (2013) Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog. Biogeosciences 10:1067–1082

    Article  Google Scholar 

  • Blackwell MSA, Yamulki S, Bol R (2010) Nitrous oxide production and denitrification rates in estuarine intertidal saltmarsh and managed realignment zones. Estuarine, Coastal and Shelf Science 87:591–600

    Article  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of north american wetlands. Wetlands 26:889–916

    Article  Google Scholar 

  • Brix H, Sorrell BK, Lorenzen B (2001) Are phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany 69:313–324

    Article  CAS  Google Scholar 

  • Chapman SJ (2010) Carbon sequestration in soils. In: Hester RE, Harrison RM (eds) Carbon capture: sequestration and storage. The Royal Society of Chemistry, Cambridge, pp 179–202

    Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles. doi:10.1029/2002GB001917

    Google Scholar 

  • Christensen T (1993) Methane emission from Arctic tundra. Biogeochemistry 21:117–139

    Article  CAS  Google Scholar 

  • Christensen TR, Ekberg A, Ström L, Mastepanov M, Panikov N, Öquist M, Svensson BH, Nykänen H, Martikainen PJ, Oskarsson H (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophysical Research Letters. doi:10.1029/2002GL016848

    Google Scholar 

  • Clevering OA, Brix H, Lukavská J (2001) Geographic variation in growth responses in Phragmites australis. Aquatic Botany 69:89–108

    Article  Google Scholar 

  • Couwenberg J, Thiele A, Tanneberger F, Augustin J, Bärisch S, Dubovik D, Liashchynskaya N, Michaelis D, Minke M, Skuratovich A, Joosten H (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89

    Article  CAS  Google Scholar 

  • Crill PM, Martens CS (1986) Methane production from bicarbonate and acetate in an anoxic marine sediment. Geochimica et Cosmochimica Acta 50:2089–2097

    Article  CAS  Google Scholar 

  • Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides: using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils. Bioscience 50:667–680

    Article  Google Scholar 

  • Dias ATC, Hoorens B, Logtestijn RSP, Vermaat JE, Aerts R (2010) Plant species composition can be used as a proxy to predict methane emissions in peatland ecosystems after land-use changes. Ecosystems 13:526–538

    Article  CAS  Google Scholar 

  • Ding W, Cai Z, Tsuruta H, Li X (2003) Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere 51:167–173

    Article  CAS  PubMed  Google Scholar 

  • Giani L, Ahrensfeld E (2002) Pedobiochemical indicators for eutrophication and the development of “black spots” in tidal flat soils on the North Sea coast. Journal of Plant Nutrition and Soil Science 165:537–543

    Article  CAS  Google Scholar 

  • Giani L, Landt A (2000) Initiale Marschbodenentwicklung aus brackigen Sedimenten des Dollarts an der südwestlichen Nordseeküste. Journal of Plant Nutrition and Soil Science 163:549–553

    Article  CAS  Google Scholar 

  • Giani L, Dittrich K, Martsfeld-Hartmann A, Peters G (1996) Methanogenesis in saltmarsh soils of the North Sea coast of Germany. European Journal of Soil Science 47:175–182

    Article  CAS  Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  CAS  PubMed  Google Scholar 

  • Holland EA, Robertson GP, Greenberg J, Groffmann PM, Boone RD, Gosz JR (1999) Soil CO2, N2O and CH4 exchange. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard methods for long-term ecological research. Oxford University Press, Oxford, pp 185–201

    Google Scholar 

  • Hootsmans MJM, Wiegman F (1998) Four helophyte species growing under salt stress: their salt of life? Aquatic Botany 62:81–94

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Iversen N, Jorgensen BB (1985) Anaerobic methane oxidation rates at the sulfate methane transition in marine sediments from Kattegat and Skagerrat. Limnology and Oceanography 30:944–955

    Article  CAS  Google Scholar 

  • Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytologist 164:423–439

    Article  Google Scholar 

  • Jungkunst HF, Fiedler S (2007) Latitudinal differentiated water table control of carbon dioxide, methane and nitrous oxide fluxes from hydromorphic soils: feedbacks to climate change. Global Change Biology 13:2668–2683

    Article  Google Scholar 

  • Jurasinski G, Koebsch F, Hagemann U, Guenther A (2013) Flux: flux rate calculation from dynamic closed chamber measurements. version 02.2, R-package, http://cran.r-project.org/web/packages/flux/index.html

  • Keller J, Wolf A, Weisenhorn P, Drake B, Megonigal JP (2009) Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry 96:101–117

    Article  CAS  Google Scholar 

  • King GM, Wiebe WJ (1980) Regulation of sulfate concentrations and methanogenesis in salt marsh soils. Estuarine and Coastal Marine Science 10:215–223

    Article  CAS  Google Scholar 

  • Koch S, Jurasinski G, Koebsch F, Koch M, Glatzel S (2014) Spatial variability of annual estimates of methane emissions in a phragmites australis (Cav.) trin. ex steud. Dominated restored coastal brackish Fen. Wetlands. doi:10.1007/s13157-014-0528-z:1–10

    Google Scholar 

  • Kuivila KM, Murray JW, Devol AH (1990) Methane production in the sulfate-depleted sediments of two marine basins. Geochimica et Cosmochimica Acta 54:403–411

    Article  CAS  Google Scholar 

  • Kutzbach L, Wagner D, Pfeiffer E-M (2004) Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 69:341–362

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology 37:25–50

    Article  Google Scholar 

  • Livingston GP, Hutchinson GL (1995) Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson PA, Harris RC (eds) Biogenic trace gases: measuring emissions from soil and water. Blackwell Science, Oxford, pp 14–51

    Google Scholar 

  • Maljanen M, Sigurdsson BD, Guðmundsson J, Óskarsson H, Huttunen JT, Martikainen PJ (2010) Greenhouse gas balances of managed peatlands in the Nordic countries – present knowledge and gaps. Biogeosciences 7:2711–2738

    Article  CAS  Google Scholar 

  • Neubauer S, Megonigal JP (2015) Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems. doi:10.1007/s10021-015-9879-4:1-14

    Google Scholar 

  • NLWKN (2015) https://www.pegelonline.nlwkn.niedersachsen.de/Karte access date: 11-16-2015

  • Petersen J, Pott R, Dauck HP (2005) Ostfriesische Inseln: Landschaft und Vegetation im Wandel. Schlütersche, Hannover

    Google Scholar 

  • Poffenbarger H, Needelman B, Megonigal JP (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31:831–842

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. version 3.0.3, http://www.R-project.org/

  • Rejmankova E, Post RA (1996) Methane in sulfate-rich and sulfate-poor wetland sediments. Biogeochemistry 34:57–70

    Article  CAS  Google Scholar 

  • Robinson AD, Nedwell DB, Harrison RM, Ogilvie BG (1998) Hypernutrified estuaries as sources of N2O emission to the atmosphere: the estuary of the River Colne, Essex, UK. Marine Ecology Progress Series 164:59–71

    Article  CAS  Google Scholar 

  • Schlichting E, Blume H-P, Stahr K (1995) Bodenkundliches praktikum 2 edition. Blackwell Wiss.- Ver, Berlin

    Google Scholar 

  • Sehy U, Dyckmans J, Ruser R, Munch JC (2004) Adding dissolved organic carbon to simulate freez-thaw related N2O emissions from soils. Journal of Plant Nutrition and Soil Science 167:471–478

    Article  CAS  Google Scholar 

  • Smith KA, Thomson PE, Clayton H, McTaggart IP, Conen F (1998) Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmospheric Environment 32:3301–3309

    Article  CAS  Google Scholar 

  • Sparling G, Vojvodić-Vuković M, Schipper LA (1998) Hot-water-soluble C as a simple measure of labile soil organic matter: The relationship with microbial biomass C. Soil Biology and Biochemistry 30:1469–1472

    Article  CAS  Google Scholar 

  • van den Pol-van Dasselaar A, Oenema O (1999) Methane production and carbon mineralisation of size and density fractions of peat soils. Soil Biology and Biochemistry 31:877–886

    Article  Google Scholar 

  • Velthof GL, Jarvis SC, Stein A, Allen AG, Oenema O (1996) Spatial variability of nitrous oxide fluxes in mown and grazed grasslands on a poorly drained clay soil. Soil Biology and Biochemistry 28:1215–1225

    Article  CAS  Google Scholar 

  • Vleeshouwers LM, Verhagen A (2002) Carbon emission and sequestration by agricultural land use: a model study for Europe. Global Change Biology 8:519–530

    Article  Google Scholar 

  • Wagner D, Pfeiffer E-M (1997) Two optima of methane production in a typical soil of the Elbe river marshland. FEMS Microbiology Ecology 22:145–153

    Article  CAS  Google Scholar 

  • Wang Z, Zeng D, Patrick WH (1996) Methane emissions from natural wetlands. Environmental Monitoring and Assessment 42:143–161

    Article  CAS  PubMed  Google Scholar 

  • Webster CP, Dowdell RJ (1982) Nitrous oxide emission from permanent grass swards. Journal of the Science of Food and Agriculture 33:227–230

    Article  CAS  Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environmental Engineering Science 22:73–94

    Article  CAS  Google Scholar 

  • Whiting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B 53:521–528

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Federal Ministry of Education and Research within the joint research project COMTESS (COastal sustainable land Management Trade-offs in EcoSystem Services). We want to thank our partners (Stephan Glatzel, Stefan Koch and Stefan Köhler) from the University of Rostock who assisted us in measuring GHG and provided the hot-water soluble carbon data. We also thank the project coordination and all other project partners for inspirations and discussions supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Witte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witte, S., Giani, L. Greenhouse Gas Emission and Balance of Marshes at the Southern North Sea Coast. Wetlands 36, 121–132 (2016). https://doi.org/10.1007/s13157-015-0722-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-015-0722-7

Keywords

Navigation