Skip to main content

Advertisement

Log in

Spatial Variations in Pore-Water Biogeochemistry Greatly Exceed Temporal Changes During Baseflow Conditions in a Boreal River Valley Mire Complex, Northwest Russia

Wetlands Aims and scope Submit manuscript

Abstract

Mobilization and release of carbon from mires to the atmospheric and aquatic systems depend on biogeochemical conditions in the peat soils. These conditions can widely vary within the large boreal mire complexes that are typically composed of a variety of mesoscale ecohydrological landscape units. This study aims to characterize spatial and temporal variations of dissolved organic carbon (DOC) and major base ion concentrations in surface and soil pore waters of a typical boreal river valley mire complex in northwest Russia. Three mesoscale ecohydrological landscape units were identified based on vegetation, topography and water table characteristics and investigated with regard to their hydrochemistry: bog, fen and marginal swamp forest. The highest DOC concentrations were detected in the swamp forest, and the lowest concentrations were observed at the bog (swamp forest: 42–54 mg L−1, fen: 28–38 mg L−1, bog: 20–28 mg L−1). The transitional swamp forest zone was also the primary contributor of the water discharged from the investigated site. Thus, these transitional zones should be investigated in more detail because these previously largely neglected landscape units appear to have a strong effect on biogeochemical properties of the discharged water and are potentially major greenhouse gas emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Baird AJ, Belyea LR, Morris PJ (2009) Upscaling of peatland-atmosphere fluxes of methane: Small-scale heterogeneity in process rates and the pitfalls of “bucket-and-slab” models. In: Baird AJ, Belyea LR, Comas X, Reeve AS, Slater LD (eds) Geophysical monograph series. American Geophysical Union, Washington, pp 37–53

    Google Scholar 

  • Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The Hot summer of 2010: redrawing the temperature record Map of Europe. Science 332:220–224

    Article  CAS  PubMed  Google Scholar 

  • Bendell-Young L (2003) Peatland interstitial water chemistry in relation to that of surface pools along a peatland mineral gradient. Water Air Soil Pollut 143:363–375

    Article  CAS  Google Scholar 

  • Blodau C (2002) Carbon cycling in peatlands - a review of processes and controls. Environ Rev 10:111–134

    Article  CAS  Google Scholar 

  • Blodau C, Basiliko N, Moore TR (2004) Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 67:331–351

    Article  CAS  Google Scholar 

  • Boeye D, Verheyen RF (1994) The relation between vegetation and soil chemistry gradients in a ground water discharge fen. J Veg Sci 5:553–560

    Article  Google Scholar 

  • Bragazza L, Gerdol R (1999a) Ecological gradients in some Sphagnum mires in the south-eastern Alps (Italy). Appl Veg Sci 2:55–60

    Article  Google Scholar 

  • Bragazza L, Gerdol R (1999b) Hydrology, groundwater chemistry and peat chemistry in relation to habitat conditions in a mire on the South – eastern Alps of Italy. Plant Ecol 1:243–256

    Article  Google Scholar 

  • Bragazza L, Rydin H, Gerdol R (2005) Multiple gradients in mire vegetation: a comparison of a Swedish and an Italian bog. Plant Ecol 177:223–236

    Article  Google Scholar 

  • Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci U S A 103:19386–19389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bubier JL (1995) The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. J Ecol 83:403–420

    Article  Google Scholar 

  • Carpenter SR, Cole JJ, Pace ML, Van de Bogert M, Bade DL, Bastviken D, Gille CM, Hodgson JR, Kitchell JF, Kritzberg ES (2005) Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86:2737–2750

    Article  Google Scholar 

  • Charman DJ (2002) Peatlands and environmental change. J. Wiley, Chichester. England

  • Christiansen JR, Vesterdal L, Gundersen P (2010) Nitrous oxide and methane exchange in two small temperate forest catchments—effects of hydrological gradients and implications for global warming potentials of forest soils. Biogeochemistry 107:437–454

    Article  Google Scholar 

  • Clark JM, Chapman PJ, Adamson JK, Lane SN (2005) Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils. Glob Chang Biol 11:791–809

    Article  Google Scholar 

  • D’Amore DV, Fellman JB, Edwards RT, Hood E (2010) Controls on dissolved organic matter concentrations in soil and streams from a forested wetland and sloping bog in southeast Alaska. Ecohydrol 3:249–261. doi:10.1002/eco.101

    Article  Google Scholar 

  • Dalva M, Moore TR (1991) Sources and sinks of dissolved organic carbon in a forested swamp catchment. Biogeochemistry 15:1–19

    Article  CAS  Google Scholar 

  • Dawson JJ, Billett MF, Neal C, Hill S (2002) A comparison of particulate, dissolved and gaseous carbon in two contrasting upland streams in the UK. J Hydrol 257:226–246

    Article  CAS  Google Scholar 

  • ESA, 2010. GlobCover (2009) (Global Land Cover Map) Released on 21 December;30. http://due.esrin.esa.int/globcover/

  • Evans CD, Jones TG, Burden A, Ostle N, Zieliński P, Cooper MDA, Peacock M, Clark JM, Oulehle F, Cooper D, Freeman C (2012) Acidity controls on dissolved organic carbon mobility in organic soils. Glob Chang Biol 18:3317–3331. doi:10.1111/j.1365-2486.2012.02794.x

    Article  Google Scholar 

  • Fenner N, Freeman C, Hughes S, Reynolds B (2001) Molecular weight spectra of dissolved organic carbon in a rewetted Welsh peatland and possible implications for water quality. Soil Use Manag 17:106–112. doi:10.1111/j.1475-2743.2001.tb00015.x

    Article  Google Scholar 

  • Fenner N, Freeman C, Worrall F (2009). Hydrological Controls on Dissolved Organic Carbon Production and Release from UK Peatlands, in: Baird AJ, Belyea LR, Comas X, Reeve AS, Slater LD (Eds.), Carbon Cycling in Northern Peatlands. American Geophysical Union: 237–249

  • Fenner N, Williams R, Toberman H, Hughes S, Reynolds B, Freeman C (2011) Decomposition “hotspots” in a rewetted peatland: implications for water quality and carbon cycling. Hydrobiologia 674:51–66. doi:10.1007/s10750-011-0733-1

    Article  CAS  Google Scholar 

  • Fiedler S, Höll BS, Jungkunst HF (2005) Methane budget of a black forest spruce ecosystem considering soil pattern. Biogeochemistry 76:1–20

    Article  CAS  Google Scholar 

  • Forbrich I, Kutzbach L, Wille C, Becker T, Wu J, Wilmking M (2011) Cross-evaluation of measurements of peatland methane emissions on microform and ecosystem scales using high-resolution landcover classification and source weight modelling. Agric For Meteorol 151:864–874

    Article  Google Scholar 

  • Fraser CJD, Roulet N, Moore TR (2001) Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog. Hydrol Process 15:3151–3166

    Article  Google Scholar 

  • Freeman C, Lock MA, Reynolds B (1993) Impacts of climatic change on peatland hydrochemistry; a laboratory-based experiment. Chem Ecol 8:49–59. doi:10.1080/02757549308035300

    Article  CAS  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001a) An enzymic “latch” on a global carbon store. Nature 409:149. doi:10.1038/35051650

    Article  CAS  PubMed  Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001b) Export of organic carbon from peat soils. Nature 412:785. doi:10.1038/35090628

    Article  CAS  PubMed  Google Scholar 

  • Frey KE, Smith LC (2005) Amplified carbon release from vast West Siberian peatlands by 2100. Geophys Res Lett 32, L09401. doi:10.1029/2004GL022025

    Google Scholar 

  • Gažovič M, Kutzbach L, Schreiber P, Wille C, Wilmking M (2010) Diurnal dynamics of CH4 from a boreal peatland during snowmelt. Tellus Ser B Chem Phys Meteorol 62:133–139

    Article  Google Scholar 

  • Glaser PH, Wheeler GA, Gorham E, Wright HE (1981) The patterned mires of the red lake peatland, northern Minnesota: vegetation, water chemistry and landforms. J Ecol 69:575–599

    Article  CAS  Google Scholar 

  • Glaser PH, Janssens JA, Siegel DI (1990) The response of vegetation to chemical and hydrological gradients in the lost river peatland, northern Minnesota. J Ecol 78:1021–1048

    Article  Google Scholar 

  • Grunwald D, Fender AC, Erasmi S, Jungkunst HF (2012) Towards improved bottom-up inventories of methane from the European land surface. Atmos Environ 51:203–211

    Article  CAS  Google Scholar 

  • Helmer EH, Urban NR, Eisenreich SJ (1990) Aluminum geochemistry in peatland waters. Biogeochemistry 9:247–276

    Article  CAS  Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Chang Biol 6:196–210

    Article  Google Scholar 

  • Holden J (2005) Peatland hydrology and carbon release: why small-scale process matters. Philos Trans R Soc - Ser Math Phys Eng Sci 363:2891–2913

    Article  CAS  Google Scholar 

  • Howie SA, Tromp-van Meerveld I (2011) The essential role of the lagg in raised bog function and restoration: a review. Wetlands 31:613–622

    Article  Google Scholar 

  • Howie SA, van Meerveld HJ (2012) Temporal variation in depth to water table and hydrochemistry in three raised bogs and their laggs in coastal British Columbia. Can Hydrol Earth Syst Sci Discuss 9:14065–14107

    Article  Google Scholar 

  • Howie SA, van Meerveld HJ (2013) Regional and local patterns in depth to water table, hydrochemistry, and peat properties of bogs and their laggs in coastal British Columbia. Hydrol Earth Syst Sci Discuss 10:3143–3185

    Article  Google Scholar 

  • Hughes S, Reynolds B, Brittain SA, Hudson JA, Freeman C (1998) Temporal trends in bromide release following rewetting of a naturally drained gully mire. Soil Use Manag 14:248–251. doi:10.1111/j.1475-2743.1998.tb00161.x

    Article  Google Scholar 

  • Inisheva LI, Inishev NG (2001) Elements of water balance and hydrochemical characteristic of oligotrophic bogs in the southern taiga subzone of Western Siberia. Water Resour 28:371–377

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, Rome

  • Kalbitz K, Wennrich R (1998) Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Sci Total Environ 209:27–39

    Article  CAS  PubMed  Google Scholar 

  • Karlsson J, Byström P, Ask J, Ask P, Persson L, Jansson M (2009) Light limitation of nutrient-poor lake ecosystems. Nature 460:506–509

    Article  CAS  PubMed  Google Scholar 

  • Köhler SJ, Buffam I, Laudon H, Bishop KH (2008) Climate’s control of intra-annual and interannual variability of total organic carbon concentration and flux in two contrasting boreal landscape elements. J Geophys Res 113, G03012. doi:10.1029/2007JG000629

    Google Scholar 

  • Koprivnjak JF, Moore TR (1992) Sources, sinks, and fluxes of dissolved organic carbon in subarctic fen catchments. Arct Alp Res 24:204–210

    Article  Google Scholar 

  • Laitinen J, Rehell S, Huttunen A, Tahvanainen T, Heikkilä R, Lindholm T (2007) Mire systems in Finland - special view to aapa mires and their water-flow pattern. Suo 58:1–26

    Google Scholar 

  • Langer S (2012) The tracer potential of nutrient elements for lateral matter transport in a boreal forest-peatland-landscape. Diploma thesis, University of Hamburg

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications - a synthesis. Biogeosciences 5:1475–1491

    Article  CAS  Google Scholar 

  • Marin LE, Kratz TK, Bowser CJ (1990) Spatial and temporal patterns in the hydrogeochemistry of a poor fen in Northern Wisconsin. Biogeochemistry 11:63–76

    Article  CAS  Google Scholar 

  • Moore TR (1987) Patterns of dissolved organic matter in subarctic peatlands. Earth Surf Process Landf 12:387–397

    Article  CAS  Google Scholar 

  • Moore TR, Matos L, Roulet N (2003) Dynamics and chemistry of dissolved organic carbon in Precambrian Shield catchments and an impounded wetland. Can J Fish Aquat Sci 60:612–623

    Article  CAS  Google Scholar 

  • Oliver B, Thurman E, Malcolm R (1983) The contribution of humic substances to the acidity of colored natural waters. Geochim Cosmochim Acta 47:2031–2035

    Article  CAS  Google Scholar 

  • Pastor J, Solin J, Bridgham SD, Updegraff K, Harth C, Weishampel P, Dewey B (2003) Global warming and the export of dissolved organic carbon from boreal peatlands. Oikos 100:380–386

    Article  Google Scholar 

  • Pluchon N, Hugelius G, Kuusinen N, Kuhry P (2014) Recent paludification rates and effects on total ecosystem carbon storage in two boreal peatlands of Northeast European Russia. The Holocene. doi:10.1177/0959683614523803

    Google Scholar 

  • Pokrovsky O, Dupré B, Schott J (2005) Fe-Al-organic colloids control of trace elements in peat soil solutions: results of ultrafiltration and dialysis. Aquat Geochem 11:241–278

    Article  CAS  Google Scholar 

  • Pokrovsky O, Schott J, Dupre B (2006) Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in Central Siberia. Geochim Cosmochim Acta 70:3239–3260

    Article  CAS  Google Scholar 

  • Roulet N, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Chang Biol 13:397–411

    Article  Google Scholar 

  • Runkle BRK, Wille C, Gažovič M, Wilmking M, Kutzbach L (2014) The surface energy balance and its drivers in a boreal peatland fen of northwestern Russia. J Hydrol 511:359–373

    Article  CAS  Google Scholar 

  • Rydin H, Jeglum J (2006) The Biology of Peatlands, illustrated edition. ed. Oxford University Press

  • Schneider J, Kutzbach L, Wilmking M (2012) Carbon dioxide exchange fluxes of a boreal peatland over a complete growing season, Komi Republic, NW Russia. Biogeochemistry 111:485–513

    Article  CAS  Google Scholar 

  • Shvartsev SL, Serebrennikova OV, Zdvizhkov MA, Savichev OG, Naimushina OS (2012) Geochemistry of wetland waters from the lower Tom basin, southern Tomsk oblast. Geochem Int 50:367–380

    Article  CAS  Google Scholar 

  • Sidorchuk A, Borisova O, Panin A (2001) Fluvial response to the Late Valdai/Holocene environmental change on the East European Plain. Glob Planet Chang 28:303–318

    Article  Google Scholar 

  • Smit R, Bragg O, Ingram HA (1999) Area separation of streamflow in an upland catchment with partial peat cover. J Hydrol 219:46–55

    Article  Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes - a review. J Plant Nutr Soil Sci 169:310–329

    Article  CAS  Google Scholar 

  • Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP (2005) A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett 42, L21413. doi:10.1029/2005GL024413

    Article  Google Scholar 

  • Struyf E, Conley DJ (2009) Silica: an essential nutrient in wetland biogeochemistry. Front Ecol Environ 7:88–94

    Article  Google Scholar 

  • Tahvanainen T, Sallantaus T, Heikkila R, Tolonen K (2002) Spatial variation of mire surface water chemistry and vegetation in northeastern Finland. Ann Bot Fenn 39:235–251

    CAS  Google Scholar 

  • Tipping E, Woof C (1990) Humic substances in acid organic soils - modeling their release to the soil solution in terms of humic charge. J Soil Sci 41:573–586

    Article  CAS  Google Scholar 

  • Tipping E, Woof C, Rigg E, Harrison AF, Ineson P, Taylor K, Benham D, Poskitt J, Rowland AP, Bol R, Harkness DD (1999) Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment. Environ Int 25:83–95

    Article  CAS  Google Scholar 

  • Ulanowski TA, Branfireun BA (2013) Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland. Can Sci Total Environ 454–455:211–218

    Article  Google Scholar 

  • Verhoeven JTA, Toth E (1995) Decomposition of Carex and sphagnum litter in fens: effect of litter quality and inhibition by living tissue homogenates. Soil Biol Biochem 27:271–275

    Article  CAS  Google Scholar 

  • Vitt DH, Bayley SE, Jin T-L (1995) Seasonal variation in water chemistry over a bog-rich fen gradient in Continental Western Canada. Can J Fish Aquat Sci 52:587–606

    Article  CAS  Google Scholar 

  • Waddington JM, Roulet N (2000) Carbon balance of a boreal patterned peatland. Glob Chang Biol 6:87–97

    Article  Google Scholar 

  • Walbridge MR (1994) Plant community composition and surface water chemistry of fen peatlands in west Virginia’s Appalachian plateau. Water Air Soil Pollut 77:247–269

    Article  CAS  Google Scholar 

  • Waughman GJ (1980) Chemical aspects of the ecology of some south German peatlands. J Ecol 68:1025–1046

  • Weltzin JF, Bridgham SD, Pastor J, Chen J, Harth C (2003) Potential effects of warming and drying on peatland plant community composition. Glob Chang Biol 9:141–151

    Article  Google Scholar 

  • Wiedermann MM, Nordin A, Gunnarsson U, Nilsson MB, Ericson L (2007) Global change shifts vegetation and plant-parasite interactions in a boreal mire. Ecology 88:454–464

    Article  PubMed  Google Scholar 

  • Wolf U (2009) Above- and belowground methane dynamics of a boreal peatland ecosystem of varying vegetation composition during summer in the Republic of Komi, Russia. (Diploma thesis). Georg-August-Universität Göttingen, Göttingen

Download references

Acknowledgments

This work was supported through the Cluster of Excellence “Integrated Climate System Analysis and Prediction CliSAP” (EXC177), University of Hamburg, funded by the German Research Foundation (Integrated Research Activity 08/2-034). B. Runkle is additionally supported through the University of Hamburg’s Center for a Sustainable University (KNU). Infrastructure at the study site was partially supported by the CARBO-North Project (6th FP of the EU, Contract number 36993 to M. Wilmking). We thank and acknowledge Svetlana Zagirova and other members of the Komi Science Centre for their logistical support and for arranging laboratory space for analyses. We thank Christian Knoblauch, Christian Wille, Tom Jaeppinen, Birgit Schwinge, Susanne Kopelke, Stephanie Langer, Tatiana Pristova, Oleg Michajlov, Michael Miglovec and Norman Rüggen for their support during this project. Last but not least we appreciate support in mapping from Sebastian Zubrzycki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armine Avagyan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avagyan, A., Runkle, B.R., Hartmann, J. et al. Spatial Variations in Pore-Water Biogeochemistry Greatly Exceed Temporal Changes During Baseflow Conditions in a Boreal River Valley Mire Complex, Northwest Russia. Wetlands 34, 1171–1182 (2014). https://doi.org/10.1007/s13157-014-0576-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-014-0576-4

Keywords

Navigation