Skip to main content

Advertisement

Log in

Geochemical, Temperature, and Hydrologic Transport Limitations on Nitrate Retention in Tidal Freshwater Wetlands, Patuxent River, Maryland

  • Article
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Tidal freshwater wetlands receive and retain significant amounts of water, nutrients, and sediment loads from terrestrial watersheds. Wetlands retain nutrients, particularly nitrogen, through microbial processing (e.g. denitrification), plant uptake, and burial. Previous research has provided data on these processes through plot studies and laboratory experiments; however, in situ validation of these results is necessary. Extending the localized measurements to the ecosystem scale requires an understanding of external controls on ecosystem retention processes, such as the determination of whether nitrogen retention is controlled by supply, temperature, or hydrologic transport. These controls were examined through a multi-scale, mass balance approach to measure nitrate retention in tidal freshwater wetlands of the Patuxent River, Maryland. Mass balance measurements of hydrologic and nitrate fluxes were conducted over a 3-year period on a range of marsh sizes. These mass balance results indicate that nitrate retention is not limited by incoming nitrate supply, and is not sensitive to the range of temperatures encountered during the growing season. Nitrate retention data composed of all marsh sites and seasons can be expressed as a simple function of water volume. This result suggests that nitrate retention is principally controlled by hydrologic transport in this tidal freshwater marsh ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Stuedler P, Melillo JM (1989) Nitrogen saturation in Northern forest ecosystems: excess nitrogen from fossil fuel combustion may stress the biosphere. BioScience 39:378–386

    Article  Google Scholar 

  • Aber JD, McDowell W, Nadelhoffer KJ, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience 48:921–934

    Article  Google Scholar 

  • Abdalla M, Jones M, Smith P, Williams M (2009) Nitrous oxide fluxes and denitrification sensitivity to temperature in Irish pasture soils. Soil Use and Management 25:376–388. doi:10.1111/j.1475-2743.2009.00237.x

    Article  Google Scholar 

  • Ågren GI, Bosatta E (1988) Nitrogen saturation of terrestrial ecosystems. Environmental Pollution 54:185–197

    Article  PubMed  Google Scholar 

  • Barendregt A, Swarth CW (2013) Tidal freshwater wetlands: variation and changes. Estuaries and Coasts 36:225–456. doi:10.1007/s12237-013-9626-z

    Article  Google Scholar 

  • Betlach MR, Tiedje JM (1981) Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Applied Environmental Microbiology 42:1074–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boesch DF, Brinsfield RB, Magnien RE (2001) Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. Journal of Environmental Quality 30:303–320

    Article  CAS  PubMed  Google Scholar 

  • Bowden WB (1987) The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry 4:314–348

    Article  Google Scholar 

  • Boynton WR, Garber JH, Summers R, Kemp WM (1995) Inputs, transformations, and transport of N and P in Chesapeake Bay and selected tributaries. Estuaries 18:285–314

    Article  CAS  Google Scholar 

  • Boynton WR, Hagy JD, Cornwell JC, Kemp WM, Greene SM, Owens MS, Baker JE, Larsen RK (2008) Nutrient budgets and management actions in the Patuxent River Estuary, Maryland. Estuaries and Coasts 31:623–651. doi:10.1007/s12237-008-9052-9

    Article  CAS  Google Scholar 

  • Burgin AJ, Groffman PM (2012) Soil O2 controls denitrification rates and N2O yield in a riparian wetland. Journal of Geophysical Research 117, G01010. doi:10.1029/2011JG001799

    Article  Google Scholar 

  • Burgin AJ, Hamilton SH (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment 5:89–96

    Article  Google Scholar 

  • Busnardo MJ, Gersberg RM, Langis R, Sinicrope TL, Zedler JB (2003) Nitrogen and phosphorus removal by wetland mesocosms subjected to different hydroperiods. Ecological Engineering 1:287–307

    Article  Google Scholar 

  • Chen Y–C, Chiu CL (2002) An efficient method of discharge measurement in tidal streams. Journal of Hydrology 265:212–224

    Article  Google Scholar 

  • Cooper AB (1990) Nitrate depletion in the riparian zone and stream channel of a small headwater catchment. Hydrobiologia 202:13–26

    Article  CAS  Google Scholar 

  • Cooper AB, Cooke JG (1984) Nitrate loss and transformation in 2 vegetated headwater streams. New Zealand Journal of Marine & Freshwater 18:441–450

    Article  Google Scholar 

  • Cornwell JC, Kemp WM, Kana TM (1999) Denitrification in coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review. Aquatic Ecology 33:41–54

    Article  CAS  Google Scholar 

  • Correll DL (1997) Buffer zones and water quality protection: general principles. In: Burt TP, Goulding KWT, Pinay G, Haycock NE (eds) Buffer zones: their processes and potential in water protection. Quest Environmental, Harfordshire, pp 7–20

    Google Scholar 

  • Davidson EA, Seitzinger SP (2006) The enigma of progress in denitrification research. Ecological Applications 16:2057–2063

    Article  PubMed  Google Scholar 

  • Dodds WK, López AJ, Bowden WB, Gregory S, Grimm NB, Hamilton SK, Hershey AE, Martí E, McDowell WH, Meyer JL, Morrall D, Mulholland PJ, Peterson BJ, Tank JL, Valett HM, Webster JR, Wollheim W (2002) N uptake as a function of concentration in streams. Journal of North American Benthological Society 21:206–220

    Article  Google Scholar 

  • Ensign SH, Piehler MF, Doyle MW (2008) Riparian zone denitrification affects nitrogen flux through a tidal freshwater river. Biogeochemistry 91:133–150. doi:10.1007/s10533-008-9265-9

    Article  CAS  Google Scholar 

  • Ensign S, Siporin K, Piehler M, Doyle M, Leonard L (2013) Hydrologic versus biogeochemical controls of denitrification in tidal freshwater wetlands. Estuaries and Coasts 36:519–532. doi:10.1007/s12237-012-9491-1

    Article  CAS  Google Scholar 

  • Eyes on the Bay (1998) Maryland Department of Natural Resources. Eyes on the Bay: Water quality monitoring data, Annapolis, Maryland, USA. http://mddnr.chesapeakebay.net/eyesonthebay/index.cfm. Accessed 15 Sept 2012

  • Fisher DC, Oppenheimer M (1991) Nitrogen deposition and the Chesapeake Bay Estuary. Ambio 20:102–108

    Google Scholar 

  • Fisher TR, Harding LW, Stanley DW, Ward LG (1988) Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries. Estuarine, Coastal and Shelf Science 27:61–93

    Article  CAS  Google Scholar 

  • Fisher TR, Hagy JD, Boynton WR, Williams MR (2006) Cultural eutrophication in the Choptank and Patuxent estuaries of Chesapeake Bay. Limnology and Oceanography 51:435–447

    Article  CAS  Google Scholar 

  • Hemond HF, Nuttle WK, Burke RW, Stolzenbach KD (1984) Surface infiltration in salt marshes: theory, measurement, and biogeochemical implications. Water Resources Research 20:591–600

    Article  CAS  Google Scholar 

  • Hill AR (1988) Factors influencing nitrate depletion in a rural stream. Hydrobiologia 60:111–122

    Article  Google Scholar 

  • Hirsch RM, Moyer DL, Archfield SA (2010) Weighted regressions on time, discharge, and season (WRTDS), with an application to Chesapeake Bay river inputs. Journal of American Water Resources Association 46:857–880. doi:10.1111/j.1752-1688.2010.00482.x

    Article  Google Scholar 

  • Holtan-Hartwig L, Dorsch P, Bakken LR (2002) Low temperature control of soil denitrifying communities: kinetics of N2O production and reduction. Soil Biology and Biochemistry 34:1797–1806

    Article  CAS  Google Scholar 

  • Hopfensperger KN, Kaushal SS, Findlay SEG, Cornwell JC (2009) Influence of plant communities on denitrification in a tidal freshwater marsh of the Potomac River, United States. Jounral of Environmental Quality 38:618–626. doi:10.2134/jeq2008.0220

    Article  CAS  Google Scholar 

  • Jenner, BA (2011) Geomorphic and hydrologic controls on tidal prism and inlet cross sectional area for Chesapeake Bay lagoons. Thesis, University of Maryland

  • Jordan TE, Correll DL, Weller DE (1993) Nutrient interception by a riparian forest receiving inputs from adjacent cropland. Journal of Environmental Quality 22:467–473

    Article  Google Scholar 

  • Keefe CW, Blodniker KL, Boynton WR, Clark CA, Frank JM, Kaumeyer NL, Weir MW, Wood KV, Zimmermann CF (2004) Nutrient analytical services laboratory standard operating procedures. Technical Report Number SS-80-04-CBL, Chesapeake Biological Laboratory

  • Lowrance R (1998) Riparian forest ecosystems as filters for nonpoint-source pollution. In: Pace ML, Groffman PM (eds) Limitations and frontiers in ecosystem science. Springer, New York, pp 113–141

    Chapter  Google Scholar 

  • Maag M (1997) Kinetic and temperature dependence of potential denitrification in riparian Soils. Journal of Environmental Quality 26:215–223

    Article  CAS  Google Scholar 

  • Martin TL, Kaushik NK, Trevors JT, Whiteley HR (1999) Review: denitrification in temperate climate riparian zones. Water, Air and Soil Pollution 111:171–186

    Article  CAS  Google Scholar 

  • McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312

    Article  CAS  Google Scholar 

  • Merrill JZ, Cornwell JC (2000) The role of oligohaline marshes in estuarine nutrient cycling. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 425–441

    Google Scholar 

  • Neubauer SC (2008) Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuarine, Coastal and Shelf Science 78:78–88

    Article  Google Scholar 

  • Neubauer SC, Anderson IC, Constantine JA, Kuehl SA (2002) Sediment deposition and accretion in a Mid-Atlantic (U.S.A.) tidal freshwater marsh. Estuarine. Coastal and Shelf Science 54:713–727

    Article  CAS  Google Scholar 

  • Nichols DS (1983) Capacity of natural wetlands to remove nutrients from wastewater. Journal Water Pollution Control Federation 55:495–505

    CAS  Google Scholar 

  • Nixon SW (1987) Chesapeake Bay nutrient budgets - a reassessment. Biogeochemistry 4:77–90

    Article  CAS  Google Scholar 

  • Nixon S, Lee V (1986) Wetlands and water quality. Final Report. Dept. Army. Technical Report Y-86-2

  • Pasternack GB, Brush GS (1998) Sedimentation cycles in a river-mouth tidal freshwater marsh. Estuaries 21:407–415

    Article  Google Scholar 

  • Patrick WH Jr, Reddy KR (1976) Nitrification-denitrification reactions in flooded soils and water bottoms: dependence on oxygen supply and ammonium diffusion. Journal of Environmental Quality 5:469–472

    Article  CAS  Google Scholar 

  • Rabalais N, Turner RE, Wiseman WJ (2001) Hypoxia in the Gulf of Mexico. Journal of Environmental Quality 30:320–329

    Article  CAS  PubMed  Google Scholar 

  • Sauer VB, Meyer RW (1992) Determination of error in individual discharge measurements. U.S. Geological Survey Professional Paper 92–144

  • Saunders DL, Kalff J (2001) Nitrogen retention in wetlands, lakes, and rivers. Hydrobiologia 443:205–212

    Article  CAS  Google Scholar 

  • Schindler DW (1998) Replication versus realism: the need for ecosystem-scale experiments. Ecosystems 1:323–334

    Article  Google Scholar 

  • Seitzinger SP (1988) Denitrification in freshwater and coastal marine systems: ecological and geochemical significance. Limnology and Oceanography 33:702–724

    Article  CAS  Google Scholar 

  • Seitzinger SP (1994) Linkages between organic matter mineralization and denitrification in eight riparian wetlands. Biogeochemistry 25:19–39

    Article  CAS  Google Scholar 

  • Seitzinger SP, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications 16:2064–2090

    Article  CAS  PubMed  Google Scholar 

  • Seitzinger SP, Styles RV, Boyer EW, Alexander RB, Billen G, Howarth RW, Mayer B, van Breemen M (2002) Nitrogen retention in rivers: model development and application to watersheds in the Northeastern U.S.A. Biogeochemistry 57(58):199–237

    Article  Google Scholar 

  • Seldomridge E (2009) Importance of channel networks on nitrate retention in freshwater tidal wetlands, Patuxent River, MD. Thesis, University of Maryland

  • Seldomridge E (2012) Geomorphic, hydraulic, and biogeochemical controls on nitrate retention in tidal freshwater marshes. Dissertation, University of Maryland

  • Seldomridge E, Prestegaard K (2012) Use of geomorphic, hydrologic, and nitrogen mass balance data to model ecosystem nitrate retention in tidal freshwater wetlands. Biogeosciences 9:1407–1437. doi:10.5194/bgd-9-1407-2012

    Article  Google Scholar 

  • Sheibley RW, Jackman AP, Duff JH, Triska FJ (2003) Numerical modeling of coupled nitrification-denitrification in sediment perfusion cores from the hyporheic zone of Shingobee River, MN. Advances in Water Resources 26:977–987

    Article  CAS  Google Scholar 

  • Simpson RL, Good RE, Leck MA, Whigham DF (1983) The ecology of freshwater tidal wetlands. BioScience 33:255–259

    Article  CAS  Google Scholar 

  • Smullen JT, Taft JI, Macknis J (1982) Nutrient and sediment loads to the tidal Chesapeake Bay system. In: United States Environmental Protection Agency, Chesapeake Bay Program. Technical Studies: A Synthesis. Washington, D.C., pp 147–258

  • Snyder NJ, Mostaghimi S, Berry DF, Reneau RB, Hong S, McClellan PW, Smith EP (1998) Impact of riparian forest buffers on agricultural nonpoint source pollution. Journal of the American Water Resources Association 34:385–395

    Article  CAS  Google Scholar 

  • Solorzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography 14:799–801

    Article  CAS  Google Scholar 

  • Stanford G, Dzienia S, Vander-Pol RA (1975) Effect of temperature on denitrification rate in soils. Soil Science Society of America Proceedings 39:867–870

    Article  CAS  Google Scholar 

  • Swarth C, Peters D (1993) Water quality and nutrient dynamics of Jug Bay on the Patuxent River 1987-1992. Jug Bay Wetlands Sanctuary Technical Report, p 110

  • Turner RE, Rabalais NN (2003) Linking landscape and water quality in the Mississippi River Basin for 200 years. BioScience 53:563–572

    Article  Google Scholar 

  • USGS NWIS [United States Geological Survey National Water Information System]. 2012

  • USGS RIM [United States Geological Survey River Input Monitoring]. 2009. Chesapeake Bay River Input Monitoring Program. http://va.water.usgs.gov/chesbay/RIMP/index.html. Accessed 15 Sept 2012

  • Vidon P, Dosskey MG (2008) Testing a simple field method for assessing nitrate removal in riparian zones. Journal of the American Water Resources Association 44:523–534. doi:10.1111/j.1752-1688.2007.00155.x

    Article  CAS  Google Scholar 

  • Wigington PJ, Griffith SM, Field JA, Baham JE, Horwath WR, Owen J, Davis JH, Rain SC, Steiner JJ (2003) Nitrate removal effectiveness of a riparian buffer along a small agricultural stream in Western Oregon. Journal of Environmental Quality 32:162–170

    Article  CAS  PubMed  Google Scholar 

  • Wollheim WM, Vörösmarty CJ, Peterson BJ, Seitzinger SP, Hopkinson CS (2006) Relationship between river size and nutrient removal. Geophysical Research Letters 33, L06410

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Jeffrey Cornwell and Mike Owens, Horn Point Laboratory, University of Maryland Center for Environmental Sciences provided lab assistance and advice that greatly improved this project. We benefited from reviews of an earlier version of this manuscript by Tom Arsuffi, Jeffrey Cornwell, Margaret Palmer, Sujay Kaushal, and Wen-lu Zhu. This research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Seldomridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seldomridge, E., Prestegaard, K. Geochemical, Temperature, and Hydrologic Transport Limitations on Nitrate Retention in Tidal Freshwater Wetlands, Patuxent River, Maryland. Wetlands 34, 641–651 (2014). https://doi.org/10.1007/s13157-014-0530-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-014-0530-5

Keywords

Navigation