Skip to main content

Advertisement

Log in

Long-term Changes and Drying Modality Affect Interstitial Assemblages of Alluvial Wetlands

  • Article
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Long-term changes (river incision, climate changes and groundwater overuse) induce increasing groundwater depletion and drought frequency in floodplains. To evaluate the effect of drought on functioning of wetlands and their interstitial zones, we studied the interstitial communities at seven stations located in five former channels of the Rhône River. Change in interstitial assemblages was assessed over a 32-year period in one wetland and over the entire floodplain between 1987 and 2010, at depths of 50 and 100 cm within the sediment. Over the 32-year period, we highlighted some links between environmental changes and variations in interstitial assemblages: a decrease in abundance and diversity of the hypogean fauna and a reverse pattern for Ephemeroptera and Cladocera. At the floodplain scale, several changes in habitat characteristics were observed and two drying modalities were identified: the formation of isolated pools and the complete disappearance of surface water. In isolated pools, the low turnover of surface water promoted a decrease in water quality, an increase in the abundance of benthic invertebrates in the interstitial habitat and a decrease in the abundance of hypogean invertebrates. In completely dried-out sites, the abundance and diversity of benthic taxa decreased, while the hypogean fauna remained dominant. These results demonstrate that interstitial assemblages are affected by long-term changes (river incision and climate changes). The local geomorphology and the resulting drying modalities control the responses of interstitial assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47:761–776

    Article  Google Scholar 

  • Amoros C, Roux A-L, Reygrobellet J-L, Bravard J-P, Pautou G (1987) A method for applied ecological studies of fluvial hydrosytems. Regulated Rivers 1:17–36

    Article  Google Scholar 

  • Angelier E (1953) Recherches écologiques et biogéographiques sur la faune des sables submerges. Archives de Zoologie Expérimentale et Générale 90:37–162

    Google Scholar 

  • Arnell NW (1999) The effect of climate change on hydrological regimes in Europe: a continental perspective. Global Environmental Changes 9:5–23

    Article  Google Scholar 

  • Baxter C, Hauer FR, Woessner WW (2003) Measuring groundwater-stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity. Transactions of the American Fisheries Society 132:493–502

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change 81:71–95

    Article  Google Scholar 

  • Bornette G, Heiler G (1994) Environmental and biological responses of former channels to river incision: a diachronic study on the Upper Rhône River. Regulated Rivers: Research & Management 9:79–92

    Article  Google Scholar 

  • Bou C (1974) Les méthodes de récolte dans les eaux souterraines interstitielles. Annals of Speleology 29:611–619

    Google Scholar 

  • Bou C, Rouch R (1967) Un nouveau champ de recherches sur la faune aquatique souterraine. Comptes Rendus de l’Academie des Sciences de Paris 265:369–370

    Google Scholar 

  • Boulton AJ, Foster JG (1998) Effects of buried leaf litter and vertical hydrological exchange on hyporheic water chemistry and fauna in a gravel-bed river in northern New South Wales, Australia. Freshwater Biology 40:229–243

    Article  Google Scholar 

  • Boulton AJ, Stanley EH (1995) Hyporheic processes during flooding and drying in a Sonoran Desert stream. II. Faunal dynamics. Archiv für Hydrobiologie 134:27–52

    Google Scholar 

  • Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29:59–81

    Article  Google Scholar 

  • Boulton AJ, Dole-Olivier M-J, Marmonier P (2003) Optimizing a sampling strategy for assessing hyporheic invertebrate biodiversity using the Bou-Rouch method: within site replication and sample volume. Archiv für Hydrobiologie 156:431–456

    Article  Google Scholar 

  • Boulton AJ, Dole-Olivier M-J, Marmonier P (2004) Effects of sample volume and taxonomic resolution on assessment of hyporheic assemblage composition sampled using a Bou-Rouch pump. Archiv für Hydrobiologie 159:327–355

    Article  Google Scholar 

  • Bravard J-P (2010) Discontinuities in draided patterns: the River Rhône from Geneva to the Camargue delta before river training. Geomophology 111:219–233

    Article  Google Scholar 

  • Bravard J-P, Amoros C, Pautou G (1986) Impact of civil engineering on the succession of communities in afluvial system. Oikos 47:92–111

    Article  Google Scholar 

  • Brunke M (1999) Colmation and deep fi ltration within streambeds: retention of particles in hyporheic interstices. International Review of Hydrobiology 84:99–117

    CAS  Google Scholar 

  • Danielopol DL (1976) The distribution of the fauna in the interstitial habitats of riverine sediments of the Danube and the Piesting (Austria). International Journal of Speleology 8:23–51

    Article  Google Scholar 

  • Datry T, Corti R, Claret C, Philippe M (2011) Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the “drying memory”. Aquatic Sciences 73:471–483

    Article  Google Scholar 

  • Dehedin A, Piscart C, Marmonier P (2013) Seasonal variations of the effect of temperature on lethal and sublethal toxicities of ammonia for three common freshwater shredders. Chemosphere:, http://dx.doi.org/10.1016/j.chemosphere.2012.07.055

    PubMed  Google Scholar 

  • Dole M-J (1985) Le domaine aquatique souterrain de la plaine alluviale du Rhône à l’est de Lyon. 2- Structure verticale des peuplements des niveaux supérieurs de la nappe. Stygologia 1:270–291

    Google Scholar 

  • Dole M-J, Mathieu J (1984) “Etude de la ”pellicule biologique“x” dans les milieux interstitiels de l’Est lyonnais. Verhandlungen Internationale Vereinigung Limnology 22:1745–1750

    Google Scholar 

  • Dole-Olivier M-J (1998) Surface water-groundwater exchanges in three dimensions on a backwater of the Rhône River. Freshwater Biology 40:93–109

    Article  Google Scholar 

  • Dole-Olivier M-J (2011) The hyporheic refuge hypothesis reconsidered: a review of hydrological aspects. Marine and Freshwater Research 62:1281–1302

    Article  Google Scholar 

  • Dole-Olivier M-J, Marmonier P, Beffy JL (1997) Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biology 37:257–276

    Article  Google Scholar 

  • Dole-Olivier M-J, Galassi MP, Marmonier P, Creuzé des Châtelliers M (2000) The biology and ecology of lotic microcrustaceans. Freshwater Biology 44:63–91

    Article  Google Scholar 

  • Fowler RT, Death RG (2001) The effect of environmental stability on hyporheic community structure. Hydrobiologia 445:85–95

    Article  Google Scholar 

  • Gallardo B, Gascon S, Garcia M, Comin FA (2009) Testing the response of macroinvertebrate functional structure and biodiversity to flooding and confinement. Journal of Limnology 68:315–326

    Article  Google Scholar 

  • Gayraud S, Philippe M (2003) Influence of bed-sediment features on the interstitial habitat available for macroinvertebrates in 15 French streams. International Review of Hydrobiology 88:77–93

    Article  Google Scholar 

  • Gibert J, Dole-Olivier M-J, Marmonier P, Vervier P (1990) Surface water-groundwater ecotones. In: Naiman RJ, Décamps H (eds) The ecology and management of aquatic-terrestrial ecotones, The Parthenon Publishing Group, Carnforth, pp 199–225

  • Hickin E, Sichingabula H (1988) The geomorphic impact of the catastrophic October 1984 flood on the planform of the Squamish River, southwestern British Columbia. Canadian Journal of Earth Science 25:1078–1087

    Google Scholar 

  • Holomuzki JR, Biggs BJF (2000) Taxon-specific responses to high-flow disturbances in streams: implications for population persistence. Journal of North Amercan Benthological Society 19:670–679

    Article  Google Scholar 

  • Hynes HBN (1974) Further studies on the distribution of stream animals within the substratum. Limnology and Oceanography 19:92–99

    Article  Google Scholar 

  • Ingendahl D, Borchardt D, Saenger N, Reichert P (2009) Vertical hydraulic exchange and the contribution of hyporheic community respiration to the whole ecosystem respiration in the River Lahn (Germany). Aquatic Sciences 71:399–410

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007. In: Pachauri R.K., Resigner A. (Eds) Contribution of working groups I, II and III to the fourth assessment report of the international panel on climate change, Switzerland

  • Jones JB, Holmes RM (1996) Surface-subsurface interactions in stream ecosystems. Trends in Ecology & Evolution 11:239–242

    Article  Google Scholar 

  • Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48:1161–1172

    Article  Google Scholar 

  • Leopold LB, Wolman MG (1957) River channel patterns-braided, meandering and straight. U.S. Geol. Survey Prof. paper 282B, 39–85

  • Magdaleno F, Fernandez-Yuste JA (2011) Meander dynamics in a changing river corridor. Geomorphology 130:197–207

    Article  Google Scholar 

  • Malard F, Ferreira D, Doledec S, Ward JV (2003) Influence of groundwater upwelling on the distribution of the hyporheos in a headwater river floodplain. Archiv für Hydrobiologie 157:89–116

    Article  CAS  Google Scholar 

  • Malcolm IA, Soulsby C, Youngson AF, Tetzlaff D (2009) Fine scale variability of hyporheic hydrochemistry in salmon spawning gravels with contrasting groundwater-surface water interactions. Hydrogeology Journal 17:161–174

    Article  CAS  Google Scholar 

  • Marmonier P, Dole-Olivier M-J, Creuzé Des Châtelliers M (1992) Spatial distribution of interstitial assemblages in the floodplain of the Rhône River. Regulated Rivers: Research & Management 7:75–82

    Article  Google Scholar 

  • Marmonier P, Vervier P, Gibert J, Dole-Olivier M-J (1993) Biodiversity in ground waters. Trends in Ecology & Evolution 8:392–395

    Article  CAS  Google Scholar 

  • Marmonier P, Piscart C, Sarriquet PE, Azam D, Chauvet E (2010) Relevance of large litter bag burial for the study of leaf breakdown in the hyporheic zone. Hydrobiologia 641:203–214

    Article  CAS  Google Scholar 

  • McKee TB, Doeskin NJ, Kleist J (1993) The Relationship of Drought Frequency and Duration to Time Scales. Proc. 8th Conf. on Applied Climatology, January 17–22, 1993. American Meteorological Society, Boston, pp 179–184

    Google Scholar 

  • Mermillod-Blondin F, Rosenberg R (2006) Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquatic Sciences 68:434–442

    Article  CAS  Google Scholar 

  • Meyer EI, Niepagenkemper O, Molls F, Spanhoff B (2008) An experimental assessment of the effectiveness of gravel cleaning operations in improving hyporheic water quality in potential salmonid spawning areas. River Research and Applications 24:119–131

    Article  Google Scholar 

  • Meyerhoff RD, Lind OT (1987) Factors affecting the Benthic community structure of a discontinuous stream in Guadelupe Mountains National Park, Texas. Internationale Revue der gesamten Hydrobiologie und Hydrographie 72:283–296

    Article  Google Scholar 

  • Nogaro G, Mermillod-Blondin F, François-Carcaillet F, Gaudet JP, Lafont M, Gibert J (2006) Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using filtration sediment columns. Freshwater Biology 51:1458–1473

    Article  Google Scholar 

  • Olsen DA, Matthaei CD, Townsend CR (2010) Effects of a depositional flood event on the hyporheos of a New Zealand stream. Fundamental and Applied Limnology 176:337–348

    Article  Google Scholar 

  • Orghidan T (1959) Ein neuer Lebensraum des unterirdischen Wassers, der hyporheische Biotop. Archiv für Hydrobiologie 55:392–414

    Google Scholar 

  • Orghidan T (2010) A new habitat of subsurface waters: the hyporheic biotope. Fundamental and Applied Limnology 176:291–302

    Article  Google Scholar 

  • Piscart C, Navel S, Maazouzi C, Montuelle B, Cornut J, Mermillod-Blondin F, Creuzé Des Châtelliers MC, Simon L, Marmonier P (2011) Leaf litter recycling in benthic and hyporheic layers in agricultural streams with different types of land use. Science of the Total Environment 409:4373–4380

    Article  PubMed  CAS  Google Scholar 

  • Robertson AL, Wood PJ (2010) Ecology of the hyporheic zone: origins, current knowledge and future directions. Fundamental and Applied Limnology 176:279–289

    Article  Google Scholar 

  • Rollet AJ (2007) Etude et gestion de la dynamique sédimentaire d’un tronçon fluvial à l’aval d’un barrage : le cas de la basse vallée de l’Ain. Thèse de Doctorat, Université Lyon 3

  • Smith JJ, Lake PS (1993) The breakdown of buried and surface-placed leaf-litter in an Upland stream. Hydrobiologia 271:141–148

    Article  Google Scholar 

  • Stanley EH, Buschmann DL, Boulton AJ, Grimm NB, Fisher SG (1994) Invertebrate resistance and resilience to intermittency in a desert stream. American Midland Naturalist 131:288–300

    Article  Google Scholar 

  • Starkel L (1983) The reflection of hydrological changes in the fluvial environments of the temperate zone during the last 15,000 years. In: Gregory KJ (ed) Background to paleohydrology. Wiley, Chichester, pp 213–235

    Google Scholar 

  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2000) Invertébrés d’eau Douce. Systématique, Biologie, Ecologie. CNRS Editions, Paris

  • Tarr TL, Baber MJ, Babbitt KJ (2005) Macroinvertebrate community structure across a wetland hydroperiod gradient in southern New Hampshire, USA. Wetlands Ecology and Management 13:321–334

    Article  Google Scholar 

  • Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Statistical Computation 7:75–83

    Article  Google Scholar 

  • Thulin B, Innova G (2008) Ecology and living conditions of groundwater fauna. Technical report TR-08-06, Hans Jürgen Hahn, Arbeitsgruppe Grundwasserökologie. University of Koblenz-Landau, Germany, p 55

    Google Scholar 

  • Traunspurger W (2000) The biology and ecology of lotic nematodes. Freshwater Biology 44:29–45

    Article  Google Scholar 

  • Vidon PG, Hill AR (2004) Landscape controls on the hydrology of stream riparian zones. Journal of Hydrology 292:210–228

    Article  Google Scholar 

  • Williams DD, Hynes HBN (1974) Occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4:233–255

    Article  Google Scholar 

  • Williams DD, Febria CM, Wong JCY (2010) Ecotonal and other properties of the hyporheic zone. Fundamental and Applied Limnology 176:349–364

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the WETCHANGE project (2010–2012) of the CEP 2009 program of the National Research Agency [Agence Nationale de la Recherche (ANR)], and supported by the ZABR network [The French LTER of the Rhône River Basin] and a doctoral research grant from the “Region Rhône-Alpes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Dehedin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehedin, A., Dole-Olivier, MJ., Piscart, C. et al. Long-term Changes and Drying Modality Affect Interstitial Assemblages of Alluvial Wetlands. Wetlands 33, 537–550 (2013). https://doi.org/10.1007/s13157-013-0411-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-013-0411-3

Keywords

Navigation