Skip to main content

Advertisement

Log in

Inorganic control on original carbonate mineralogy and creation of gas reservoir of the Upper Jurassic carbonates in the Kopet-Dagh Basin, NE, Iran

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The Upper Jurassic Mozduran Formation (Oxfordian–Tithonian) is the main petroleum reservoir in the Kopet-Dagh Basin, northeast Iran, which consists predominantly of carbonate rocks with subordinate evaporites and siliciclastics deposited in platform to deep marine settings of a subtropical sea. Detailed field surveys, petrographic investigations, facies and wire line log analyses were carried out at eight surface sections and four wells in the Kopet-Dagh Basin. Integration of petrographic and isotopic data suggests primary low-Mg calcite mineralogy of Oxfordian and Tithonian ooids. On the other hand, in the wells, Kimmeridgian ooids and cements are dominantly aragonitic and high-Mg calcite mineralogy (HMC). Marine cements with isopachous, fibrous and isopachous bladed fabrics indicate original aragonite and HMC mineralogy, respectively. The domination of aragonite mineralogy could be related to increased hypersalinity, evaporite precipitation and consequently an increase in Mg/Ca ratio, which resulted in formation of aragonite in preference to calcite. Preserved ooids with radial and concentric cortices in shallow-water settings that are nearby siliciclastic source, together with aragonitic and HMC ooids accompanied by evaporites in the drilled fields, suggest original mineralogy was probably controlled inorganically following local salinity variations. This study suggests that Kimmeridgian pay zones are mainly controlled by depositional facies, aragonitic and HMC mineralogy, and diagenetic processes such as dolomitization and dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adabi MH (2004) A re-evaluation of aragonite versus calcite seas. Carbon Evap 19(2):133–141

    Article  Google Scholar 

  • Adabi MH, Rao CP (1991) Petrographic and geochemical evidence for original aragonite mineralogy of Upper Jurassic Carbonates (Mozduran Formation), Sarakhs area, Iran. Sediment Geol 72:253–267

    Article  Google Scholar 

  • Afshar-Harb A (1979) The stratigraphy, tectonics and petroleum geology of the Kopet Dagh region, northern Iran, Unpublished PhD thesis, Imperial College of Science and Technology, London, p 316

  • Afshar-Harb A (1994) Geology of the Kopet Dagh. Geological Survey of Iran, Tehran, p 265 (In Persian)

    Google Scholar 

  • Aghanabati A (2004) Geology of Iran. Geological Survey of Iran publication, Tehran, p 558 (In Persian)

    Google Scholar 

  • Alavi M, Vaziri H, Seyed-Emami K, Lasemi Y (1997) The Triassic and associated rocks of the Aghdarband areas in central and northeastern Iran as remnant of the southern Turanian active continental margin. GSA Bull 109:1563–1575

    Article  Google Scholar 

  • Allen JR, Mathews RK (1982) Isotope signatures associated with early meteoric diagenesis. Sedimentology 29:797–817

    Article  Google Scholar 

  • Allen B, Vincent ST, Alsop GI, Ismail-Zadeh A, Fleckerd R (2003) Late Cenozoic deformation in the South Caspian region. Effects of a rigid basement block within a collision zone. Tectonophysics 366:223–239

    Article  Google Scholar 

  • Banedj-Shafiei MH (2007) Biostratigraphy and micropaleontological studies on the surface samples of Marijegan and Abghad stratigraphic columns of the Kopet Dagh area in the north eastern Iran. Technical Report 1449, NIOCEXP, Tehran Office (Unpublished)

  • Bathurst RGC (1975) Carbonate sediments and their diagenesis. Developments in sedimentology, vol 12, 2nd edn. Elsevier, Amsterdam, p 658

    Google Scholar 

  • Berent KH, Eberli GA, Gilli A (2000) Turbidite frequency and composition in the distal part of the Bahamas transect proceedings of the Ocean Drilling Program. Sci Results 166:45–60

    Google Scholar 

  • Booler J, Tucker ME (2002) Distribution and geometry of facies and early diagenesis: the key to accommodation space variation and sequence stratigraphy: upper Cretaceous Congost carbonate platform, Spanish Pyrenees. Sediment Geol 146:225–247

    Article  Google Scholar 

  • Buryakovsky LA, Chilinger GV, Aminzadeh F (2001) Petroleum geology of the South Caspian Basin. Gulf Professional Publishing, USA, p 442

    Google Scholar 

  • Cantrell DL (2006) Cortical fabrics of Upper Jurassic ooids, Arab Formation, Saudi Arabia: implications for original carbonate mineralogy. Sediment Geol 186:157–170

    Article  Google Scholar 

  • Chaftez HS, Alicia A, Imerito-Tetzalff A, Zhang J (1999) Stable-isotope and elemental trends in Pleistocene sabkha dolomites: descending meteoric water vs. sulfate reduction. Sediment Resea 69:256–266

    Article  Google Scholar 

  • Corsetti FA, Kidder DL, Marenco PT (2006) Trends in oolite dolomitization across the Neoprotozoic-Cambrian boundary: a case study from Death Valley California. Sediment Geol 191:135–150

    Article  Google Scholar 

  • Dickson JAD (1965) A modified staining technique for carbonates in thin section. Nature 205:587

    Article  Google Scholar 

  • Dickson JAD, Montanez IP, Saller AH (2001) Hypersaline burial diagenesis delineated by component isotopic analysis, Late Paleozoic limestones, West Texas. J Sedimt Res 71:372–379

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of Carbonate rocks according to depositional texture. In: Ham WE (ed.) Classification of carbonate rocks: AAPG Memoir 1, pp 108–121

  • El-Saiy AK, Jordan AK (2007) Diagenetic aspects of Tertiary carbonates west of the Northern Oman Mountains, United Arab Emirates. J Asian Earth Sci 31:35–43

    Article  Google Scholar 

  • Eren M, Tasli K (2002) Kilop Cretaceous hardground (Kale, Gümushone, NE Turkey): description and origin. J Asian Earth Sci 20:433–448

    Article  Google Scholar 

  • Fabricius FH (1987) Origin of marine ooids. Contributions to sedimentology No. 7, E Schweizerbartshe Verlagsbuchhandlung, Stuttgart, p 113

  • Flügel E (2010) Microfacies of carbonate rocks. Springer, Berlin, Heidelberg, p 996

    Book  Google Scholar 

  • Folk RL (1974) The nature of crystalline calcium carbonate, effect of magnesium content and salinity. Sediment Petrol 44:40–53

    Google Scholar 

  • Given RK, Wilkinson BH (1986) Kinetic control of morphology, composition and mineralogy of abiotic sedimentary carbonates. Sediment Petrol 55:109–119

    Google Scholar 

  • Glover ED, Pray LC (1971) High-magnesian calcite and aragonite cementation within modern subtidal carbonate sediment grains. In: Bricker OP (ed) Carbonate cements studies in geology, No. 19. Johns Hopkins University, Baltimore, pp 80–87

  • Grammer GM, Ginsburg RN, Swart PK, McNeill DF, Jull AJT, Prezbindowski DR (1993) Rapid growth rate of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Beliz. Sediment Petrol 63:983–989

    Google Scholar 

  • Hardie LA (1996) Secular variation in seawater chemistry; an explanation for the coupled secular variation in the mineralogy of marine limestones and potash evaporites over the past 600 M.Y. Geol 24:279–283

    Article  Google Scholar 

  • Husinec A, Read F (2007) The Late Jurassic Tithonian, a greenhouse phase in the Middle Jurassic-Early Cretaceous, Cool’ mode: evidence from the cyclic Adriatic platform, Craatia. Sediment 54:317–337

    Article  Google Scholar 

  • Immenhauser A, Schlager W, Burns SJ, Scott RW, Geel T, Lehmann J, van Der Gaast S, Bolder-Schrijver LJA (1999) Late Aptian to Late Albian sea-level fluctuations considered by geochemical and biological evidence (Nahr Umr Formation, Oman). JJ Sediment Res 69(2):434–446

    Article  Google Scholar 

  • Immenhauser A, Holmden C, Patterson WP (2008) Interpreting the carbon isotope record of ancient shallow epeiric seas: Lessons from the recent. In: Pratt BR, Holmden C (eds) Dynamics of epeiric seas. Geol Asso of Canada. Special Publication, pp 135–174

  • Inden RF, Moore CH (1983) Beach environment. In: Schoole PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. Tusla, Oklahoma, AAPG Memoir 33, p 211–265

  • James NP, Choquette PW (1990) The meteoric diagenetic environment. In: McIlreath A, Morrow DW (eds) Diagenesis. Geolog Assocof Canada, Brunswick, p 338

    Google Scholar 

  • James NP, Choqutte PW (1983) Diagenesis, 6, limestones-the sea floor diagenetic environment. Geosci Can 10:162–179

    Google Scholar 

  • James NP, Ginsburg RN, Marszalek DS, Choqutte PW (1976) Facies and fabric specificity of early subsea cements in shallow Belize (British Honduras) reefs. Sediment Petrol 46:523–544

    Google Scholar 

  • Kalantari A (1969) Foraminifera from the middle Jurassic-Cretaceous successions of Kopet-Dagh region (NE-Iran), unpublished PhD thesis, London University. Exploration and Production Directorate of NIOC, Geological Laboratory Publication 3, Tehran p 298

  • Kalantari A (1986) Biofacies map of Kopet-Dagh region. NIOC, Exploration and Production, 1 sheet

  • Kavoosi MA (2009) Tempestites in depositional sequences. In: Proceeding of the 62th Geological Kurutali of Turkey, MTA-Ankara, Abstract, p 569

  • Kavoosi MA (2013) Evidence for volcanic activity in the Upper Permian Nar Member of the Dalan Formation, southwest Iran. In: Poppelrieter M (ed) Permo-Triassic sequence of the Arabian Plate. EAGE Publications, Houten, the Netherlands, pp 147–162

  • Kavoosi MA, Sherkati S (2012) Depositional environments of the Kalhur Member evaporates and tectonosedimentary evolution of the Zagros fold-thrust belt during Early Miocene in southwesternmost of Iran. Carb Eav 27:55–69

    Article  Google Scholar 

  • Kavoosi MA, Lasemi Y, Sherkati Sh, Moussavi-Harami R (2009a) Facies analysis and depositional sequences of the Upper Jurassic Jurassic Mozduran Formation, a reservoir in the Kopet Dagh Basin, NE Iran. J Petrol Geol 32(3):235–260

    Article  Google Scholar 

  • Kavoosi MA, Sepehr M, Sherkati S (2009b) The Kopet-Dagh Basin evolution during Middle-Late Jurassic: Extended abstracts EAGE Meeting, Shiraz, Iran

  • Kirkland BL, Dickson JAD, Wood RA, Land LS (1998) Microbialite and microstratigraphy: the origin of encrustation in the middle and upper Capitan Formation, Guadalupe Mountains, Texas and New Mexico. Sediment Resea 68:956–969

    Article  Google Scholar 

  • Land LS, Behrens EW, Frishman SA (1979) The ooids of Baffin Bay, Texas. Sediment Petrol 49:1269–1279

    Google Scholar 

  • Lasemi Y (1995) Platform carbonates of the Upper Jurassic Mozduran Formation in the Kopet-Dagh Basin, NE Iran–facies paleoenvironments and sequences. Sediment Geol 99:151–164

    Article  Google Scholar 

  • Lasemi Y, Ghomashi M, Amin-Rasouli H, Kheradmand A (2008) The lower Triassic Sorkh Shale Formation of the Tabas Block, east central Iran: succession of a failed–rift Basin at the Paleotethys margin. Carbon Evapo 23(1):21–38

    Article  Google Scholar 

  • Leinfelder RR (1993) Upper Jurassic reef types and controlling factors. Profil 5:1–45

    Google Scholar 

  • Leinfelder RR (1997) Coral reefs and carbonate platforms within a siliciclastic setting. General aspect and examples from the Late Jurassic of Portugal. In: Proceeding 8th international conference. Coral reef symposium 2, pp 1737–1742

  • Mackenzie FL (2005) Sedimentation, diagenesis and sedimentary rocks. Elsevier Publication, Amsterdam, p 425

    Google Scholar 

  • Mackenzie FT, Pigott JD (1981) Tectonic controls of Phanerozoic rock cycling. J Geol Soc 138:183–196

    Article  Google Scholar 

  • Majidifard MR (2003) Biostratigraphy, lithostratigraphy, ammonite taxonomy and microfacies analysis of the Middle and Upper Jurassic of northeastern Iran. Dissertation zur Erlangung des Naturwissenschaftlichen Doktorgrades Der Bayerischen Julius Maximilians Universität Würzburg vorgelegt von aus Teheran Würzburg, p 209

  • Marshall JF (1983) Submarine cementation in a high energy platform reef: one Tree Reef, Southern Great Barrier Reef. Sediment Petrol 53:1133–1149

    Google Scholar 

  • Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Magaz 129:143–160

    Article  Google Scholar 

  • Marshall JF, Davies PJ (1981) Submarine lithification on windward reef slopes: Capricorn-Bunker Group, Southern Great Barrier Reef. Sediment Petrol 51:953–960

    Google Scholar 

  • Mazzullo SJ (1980) Calcite pseudospar replacive of marine acicular aragonite and implications for aragonite cement diagenesis. Sediment Petrol 50:409–422

    Google Scholar 

  • Moore CH (1989) Developments in sedimentology: Carbonate diagenesis and porosity, vol 46, p 338. Elsevier, Amsterdam

  • Moore CH (2001) Carbonate reservoirs. Porosity evolution and diagenesis in a sequence stratigraphic framework, pp 461. Elsevier Science B.V., Amsterdam

  • Morse JW (2005) Formation and diagenesis of carbonate sediments. In: Mackenzie FT (ed) Sediments, diagenesis, and sedimentary rocks. Elsevier Ltd Publication, Amsterdam, pp 67–82

    Google Scholar 

  • Moussavi-Harami R, Brenner RL (1992) Geohistory analysis and petroleum reservoir characteristics of Lower Cretaceous (Neocomian) sandstones, eastern Kopet Dagh Basin, northeastern Iran. AAPG Bul 76:1200–1208

    Google Scholar 

  • Palma RM, López-Gómez J, Piethé RD (2007) Oxfordian ramp system (La Manga Formation) in the Bardas Blancas area (Men doza Province) Neuoruen Basin, Argentina: facies and depositional sequences. Sediment Geol 195:113–134

    Article  Google Scholar 

  • Peryt TM, Raczyńnski P, Peryt D, Chlódek K (2012) Upper Permian reef complex in the basinal facies of the Zechtein limestone (Ca1), Western Poland. Geol J 47(5):537–552

    Article  Google Scholar 

  • Pomar L, Gili E, Obrador A, Ward WC (2005) Facies architecture and high-resolution sequence stratigraphy of an Upper Cretaceous platform margin succession, Southern Central Pyrenees, Spain. Sediment Geol 175:339–365

    Article  Google Scholar 

  • Purser BH (1973) The Persian Gulf Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer, Heidelberg, Berlin, p 471

    Google Scholar 

  • Purser BH, Loreau J-P (1973) Aragonitic, supratidal encrustations on the Trucial Coast, Persian Gulf. In: Purser BH (ed) The Persian Gulf. Springer, Berlin Heidelberg, New York, pp 343–376

    Chapter  Google Scholar 

  • Rao CP, Adabi MH (1992) Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia. Marine Geol 103:249–272

    Article  Google Scholar 

  • Read JF (1982) Carbonate platforms of passive (extensional) Continental margin–types, characteristics and evolution. Tectonophysics 81:195–212

    Article  Google Scholar 

  • Reijmer JJG, Andresen N (2007) Mineralogy and grain size variations along two carbonate margin-to-basin transects (Pedro Bank, Northern Nicaragua Rise). Sediment Geol 198:327–350

    Article  Google Scholar 

  • Rider M (2000) The geological interpretation of well logs, 2nd edn. Whittles Publication, Caithness, p 280

    Google Scholar 

  • Rodriguez-Lopez JP, Melendez N, de Boer PL, Sria AR (2008) Aeolian sand sea development along the mid Cretaceous western Tethyan margin (Spain): Erg sedimentology and paleoclimate implications. Sediment 55:1253–1292

    Article  Google Scholar 

  • Ruf M, Link E, Pross J, Aigner T (2005) Integrated sequence stratigraphy: facies, stable isotope and palynofacies analysis in a deeper epicontinental carbonate ramp (Late Jurassic, SW Germany). Sediment Geol 175:391–414

    Article  Google Scholar 

  • Sandberg PA (1975) New interpretations of Great Salt Lake ooids and nonskeletal carbonate mineralogy. Sediment 22:497–537

    Article  Google Scholar 

  • Sandberg PA (1983) An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature 305:19–22

    Article  Google Scholar 

  • Sandberg PA (1985) Aragonite cements and their occurrence in ancient limestones. In: Schneidermann N, Harris PM (eds) Carbonate cements, vol 36, pp 33–57. Soci of Econ Paleont and Mineral. Special Publication

  • Sano H (2006) Impact of long-term climate change and sea-level fluctuation on Mississipian to Permian mid-oceanic atoll sedimentation (Akiyoshi Limestone Group, Japan). Palaeoge, Palaecl, Palaeoec 236:169–189

    Article  Google Scholar 

  • Sattler V, Immenhauser A, Hillgärtner H, Esteban M (2005) Characterization, lateral variability and lateral extent of discontinuity surfaces on a carbonate platform (Barremian to lower Aptian, Oman). Sedimentology 52:334–361

    Article  Google Scholar 

  • Scholle PA, Ulmer-Scholle D (2003) A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis, pp 474. AAPG Memoir 77, Tulsa

  • Selley RC (1996) Ancient sedimentary environments and their sub-surface diagnosis. Chapman and Hall Publication, London, p 300

    Google Scholar 

  • Shinn EA (1983a) Tidal flat environment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments, pp 173–210. AAPG Memoir 33, Tulsa

  • Shinn EA (1983b) Birdseyes, fenestrae, shrinkage and loferites: a re-evaluation. Sediment Petrol 53:619–629

    Google Scholar 

  • Sorby HC (1879) The structure and origin of limestones. Proc Geol Soc Lond 35:56–95

    Google Scholar 

  • Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeoge, Palaecl, Palaeoec 144:3–19

    Article  Google Scholar 

  • Török A (1998) Controls on developments of Mid-Triassic ramps, examples from southern Hungary. In: Wright VP, Burchette TP (eds) Carbonate ramps, vol 149, pp 339–367. Geological society, London, Special Publications

  • Tucker ME (1993) Carbonate digenesis and sequence stratigraphy. In: Wright VP (ed) Sediment revi/1. Blackwell Scientific Publications, Oxford, pp 51–72

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford, p 482

    Book  Google Scholar 

  • Veizer J, Mackenzie FT (2005) Evolution of sedimentary rocks. In: Mackenzie FT (ed) Sediments, diagenesis, and sedimentary rocks. Elsevier Ltd Publication, Amsterdam, pp 370–402

    Google Scholar 

  • Vincent B, Emmanuel L, Houel P, Loreau J-P (2007) Geodynamic control on carbonate diagenesis: petrographic and isotopic investigation of the Upper Jurassic formations of the Paris Basin (France). Sediment Geol 197:267–289

    Article  Google Scholar 

  • Vincent B, van Buchem FSP, Bulot LG, Immenhauser A, Caron M, Baghbani D, Huc AY (2010) Carbon-isotope stratigraphy, biostratigraphy and organic matter distribution in the Aptian-Lower Albian successions of southwest Iran (Dariyan and Kazhdumi formations). GeoArab Spec Publ 4:139–197

    Google Scholar 

  • Wilkinson BH (1979) Biomineralization, paleoceanography and the evolution of marine organisms. Geology 7:524–527

    Article  Google Scholar 

  • Wilkinson BH, Owen RM, Carroll AR (1985) Submarine hydrothermal weathering, global eustasy, and carbonate polymorphism in Phanerozoic marine oolites. Sediment Pet 55:171–183

    Google Scholar 

  • Williams GD (1993) Tectonics and seismic sequence stratigraphy: an introduction. In: Williams GD, Debb A (eds) Tectonic and seismic sequence stratigraphy, no. 71, pp 1–13. Geol Soc Special Publication

Download references

Acknowledgments

I thank the National Iranian Oil Company Exploration Directorate (NIOCEXP) staff for permission to publish this paper particularly H. Ghalavand (Exploration Manager), B. Soleimani (Deputy Manager), M.H. Goodarzi, Sh. Sherkati and H. Assilian for their support. I acknowledge colleagues from NIOCEXP particularly A. Feizi, E. Madani, S.A. Mahmoudi, B. Aryafar F. Abbasalinia and N. Shokrzadeh for their willing assistance in field trips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Kavoosi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavoosi, M.A. Inorganic control on original carbonate mineralogy and creation of gas reservoir of the Upper Jurassic carbonates in the Kopet-Dagh Basin, NE, Iran. Carbonates Evaporites 29, 419–432 (2014). https://doi.org/10.1007/s13146-014-0224-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-014-0224-3

Keywords

Navigation