Skip to main content

Advertisement

Log in

Sedimentology and environmental interpretation of carbonate deposits associating the evaporites-bearing Miocene succession, northern Western Desert, Egypt

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The thin fossiliferous and gypsiferous carbonate unit located in the base of evaporite sequence outcropping in an exploited gypsum quarry in Al-Barqan area, northern Western Desert of Egypt represents a transitional stage of sedimentation between the normal marine carbonates and the evaporite deposits. The variations of the rock fabrics of the carbonate unit from peloids-bioclasts grainstone to mudstone and the mineral composition from calcite to dolomite and the association of the carbonate rocks with some gypsum at the top of the unit followed by the precipitation of gypsum deposits, reflect changes in the chemical composition of the water (e.g. variation in HCO3 and SO −24 concentrations and water salinity), climatic variations (wet vs. dry), brine restriction and progressive shallowing of the basin. The highly negative δ18O values (up to −10.0 ‰) and the low Sr content of the fossiliferous limestones reflect that the early formed shallow marine calcareous sediments might be recrystallized by 18O-depleted freshwater. On the other hand, the very finely crystalline nature of the dolomite, its association with some gypsum and the relatively high Na content reflect that this dolomite is usually interpreted as a primary evaporative dolomite or is considered a very early diagenetic product. Meanwhile, the stoichiometric composition of the dolomite, the negative shift in oxygen isotope values (−1.2 to −0.77 ‰) and the low Sr content may reflect the freshwater-mediated recrystallization of early formed marine-evaporative dolomite. Although the δ13C values (−0.17 to 1.34 ‰) of the carbonates indicate that the major source of CO −23 was derived from inorganic HCO3 , the presence of small filaments of bacteria and biofilms coated calcite and dolomite crystals and the spheroidal fabrics of some carbonate grains may point to the presence of a relationship between the metabolic activities of bacteria and precipitation of these carbonates with some contribution of organic carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdallah AM, Yehia MA (1973) Stratigraphy, microfacies study of Sidi Barrani area, Western Desert, Egypt. Bull Fac Sci, Cairo Univ 46:343–371

    Google Scholar 

  • Al-Aasm I (2000) Chemical and isotopic constraints for recrystallization of sedimentary dolomites from the Western Canada sedimentary basin. Aquatic Geochem 6:227–248

    Article  Google Scholar 

  • Anadon P, Rosell L, Talbot MR (1992) Carbonate replacement of lacustrine gypsum deposits in two Neogene continental basins, eastern Spain. Sed Geol 78:201–216

    Article  Google Scholar 

  • Anderson TF, Arthur MA (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: Arthur MA, Anderson TF, Kaplan IR, Veizer J (eds) Stable isotopes in sedimentary geology, Society of Economic Paleontologists and Mineralogists, short course, vol 10, pp 1–151

  • Andreeva P (2007) Givetian microbial carbonates from the carbonate-sulphate suite in well r-119 kardam (north-eastern bulgaria). Compt Rend Acad Bulg Sci 60:179–182

    Google Scholar 

  • Aref MA (2003) Lithofacies characteristics, depositional environment and karstification of the Late Miocene (Messinian) gypsum deposits in the Northern Western Desert, Egypt. Sedimentol Egypt 11:9–27

    Google Scholar 

  • Aref MA (2008) Analog of Microbial laminites and stromatolites in a Recent salina–sabkha setting and the Messinian gypsum deposits of the Werstern Desert of Egypt. Geol East Libya 1:153–164

    Google Scholar 

  • Arenas C, Pomar L (2010) Microbial deposits in upper Miocene carbonates, Mallorca, Spain. Palaeogeog, Palaeoclim, Palaeoecol 297:465–485

    Article  Google Scholar 

  • Attia OE, El Khoriby EM, Aref MA (2004) Sedimentology and fluid inclusions criteria of the Upper Miocene (Messinian?) gypsum deposits in the Mediterranean Coast of Egypt. Sedimentol Egypt 12:23–39

    Google Scholar 

  • Bassetti MA, Manzi V, Lugli S, Roveri M, Longinelli A, Lucchi FR, Barbieri M (2004) Paleoenvironmental significance of Messinian post–evaporitic lacustrine carbonates in the northern Apennines, Italy Maria Angela. Sed Geol 172:1–18

    Article  Google Scholar 

  • Behrens EW, Land LS (1972) Subtidal Holocene dolomite Baffin Bay, Texas. J Sed Petrol 42:155–161

    Google Scholar 

  • Bontognali TR, Vasconcelos C, Warthmann RJ, Bernnasconi SN, Dupraz C, Strohmenger CJ, Mckenzie JA (2010) Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates). Sedimentology 57:824–844

    Article  Google Scholar 

  • Budd DA (1997) Cenozoic dolomites of carbonate islands: their attributes and origin. Earth-Sci Rev 42:1–47

    Article  Google Scholar 

  • Compton JS (1988) Degree of supersaturation and precipitation of organogenic dolomite. Geology 16:318–321

    Article  Google Scholar 

  • Decima A, McKenzie JA, Schreiber BC (1988) The origin of evaporative limestones: an example for the Messinian of Sicily. J Sed Petrol 58:256–272

    Article  Google Scholar 

  • Deng S, Dong H, Lv G, Jiang H, Yu B, Bishop ME (2010) Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: results from Qinghai Lake, Tibetan Plateau, NW China. Chem Geol 278:151–159

    Article  Google Scholar 

  • Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–765

    Article  Google Scholar 

  • El Shazly M, Salman AB, Someida MM, Morsy MA, El Asy IF (1976) Report on the evaluation of gypsum and clay, Dir El Biraqat–El Hagif area, north Western Desert, Egypt. Atomic Energy Establishment, Internal Report

  • Feng D, Chen D, Roberts HH (2009) Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Mar Petrol Geol 26:1190–1198

    Article  Google Scholar 

  • Frank TD, Bernet K (2000) Isotopic signature of burial diagenesis and primary lithological contrasts in periplatform carbonates (Miocene, Great Bahama Bank). Sedimentology 47:1119–1134

    Article  Google Scholar 

  • Friedman GM (1995) Diverse origin of modern dolomite in the Levant. Carb Evap 10:65–78

    Article  Google Scholar 

  • Friedman GM, Krumbein WE (1985) Hypersaline ecosystems: the Gavish Sabkha ecological studies, vol 53. Springer, Berlin

    Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data of geochemistry: US Geol Surv Prof Paper 440–KK, pp 1–12

  • Gansen G, Kroon D (1991) Evidence for Red Sea circulation from O isotopes of modern surface waters and planktonic foraminiferal test. Paleoceanography 6:73–82

    Article  Google Scholar 

  • Gladstone R, Flecker R, Valdes P, Lunt D, Markwick P (2007) The Mediterranean hydrological budget from a Late Miocene global climate simulation. Palaeogeog Palaeoclimat Palaeoecol 251:254–267

    Article  Google Scholar 

  • Glunk C, Dupraz C, Braissant O, Gallacher KL, Verrecchia EP, Visscher PT (2011) Microbially mediated carbonate precipitation in a hypersaline lake, Big Pond (Eleuthera, Bahamas). Sedimentology 58:720–738

    Article  Google Scholar 

  • Hardy R, Tucker M (1988) X-ray powder diffraction of sediments. In: Tucker M (ed) Techniques in sedimentology. Blackwell Scientific Publication, Oxford, Boston, pp 191–228

    Google Scholar 

  • Hill RJ (1990) Field evidence for the role of organic matter in dolomitization. Master’s Abstract, Colorado School of Mines, Golden, CO

  • Holail HM, Tamish MO, El Askary MA, Sadek A (1997) Geochemistry and diagenesis of Middle Miocene carbonate rocks, northern Western Desert, Egypt. NJb Geol Paleont Mh 4:191–212

    Google Scholar 

  • Hudson JD, Anderson TP (1989) Ocean temperatures and isotopic compositions through time. R Soc Edinburgh Trans Earth Sci 80:183–192

    Article  Google Scholar 

  • Hüsing SK, Dekkers MJ, Franke C, Krijgsman W (2009) The Tortonian reference section at Monte dei Corvi (Italy): evidence for early remanence acquisition in greigite-bearing sediments. Geophys J Int 179:125–143

    Article  Google Scholar 

  • Ibrahim MI, Mansour AS (2003) Biostratigraphy and paleoecological interpretation of the Miocene–Pleistocene sequence at El-Dabaa, northwestern Egypt. J Micropaleontol 21:51–66

    Article  Google Scholar 

  • James NP, Kendall AC (1992) Introduction to carbonate and evaporite facies models. In: Walker RG, James NP (eds) Facies models, response to sea level changes. Geol Assoc Canada, Slittsville, pp 265–275

    Google Scholar 

  • Jasionowski M, Peryt TM (2010) Isotopic composition of dolomite associated with Middle Miocene Badenian anhydrites in the Carpathian Foredeep Basin of SE Poland. Geol Q 54:533–548

    Google Scholar 

  • Jones B, Luth RW (2002) Dolostones from Grand Cayman, British West Indies. J Sed Res 72:559–569

    Article  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296:643–645

    Article  Google Scholar 

  • Köhler CM, Heslop D, Dekkers MJ, Krijgsman W, van Hinsbergen DJ, von Dobeneck T (2008) Tracking provenance changes during the late Miocene in the Eastern Mediterranean Metochia section using geochemical and environmental magnetic proxies. Geochem Geophys Geosyst 9:Q12018. doi:10.1029/2008GC002127

    Article  Google Scholar 

  • Ku TC, Walter LM, Coleman ML, Blake RE, Martini AM (1999) Coupling between sulphur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulphur isotope composition of pore water sulphate, South Florida Platform, USA. Geochim Cosmochim Acta 63:2529–2546

    Article  Google Scholar 

  • Kupecz JA, Land LS (1994) Progressive recrystallization and stabilization of early-stage dolomite: Lower Ordovician, El lenburger Group, West Texas. In: Purser B, Tucker M, Zenger D (eds) Dolomites: a volume in honour of Dolomieu, Dolomieu. International Association of Sedimentologists, special publication, vol 21, pp 255–279

  • Land LS (1985) The origin of massive dolomite. J Geol Edu 33:112–125

    Google Scholar 

  • Lumsden DN (1979) Discrepancy between thin section and x-ray estimates of dolomite in limestones. J Sed Petrol 49:429–436

    Google Scholar 

  • Machel HG, Burton EA (1994) Golden grove dolomite, Barbados: origin from modified seawater. J Sed Res 64:741–751

    Google Scholar 

  • MacNeil A, Jones B (2003) Dolomitization of the Pedro Castle Formation (Pliocene), Cayman Brac, British West Indies. Sed Geol 162:219–238

    Article  Google Scholar 

  • Mansour AS, Holail HM (2004) Dolomitization of Middle Eocene carbonate rocks, Abu Roash area, Egypt. Carb Evap 19:151–161

    Article  Google Scholar 

  • Mazzullo SJ (1992) Geochemical and neomorphic alteration of dolomite: a review. Carb Evap 7:21–37

    Article  Google Scholar 

  • Melegy A, Ismael IS (2012) Sulfur isotope geochemistry of Messinian gypsum deposits from the northern coast Egypt: paleoenvironmental implications. Earth Sci India 5:122–138

    Google Scholar 

  • Meyers WJ, Lu FH, Zachariah JK (1997) Dolomitization by mixed evaporite brines and freshwater, Upper Miocene carbonates, Nijar, Spain. J Sed Res 67:898–912

    Google Scholar 

  • Noffke N, Gerdesb G, Klenkec T (2003) Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth Sci Rev 62:163–176

    Article  Google Scholar 

  • Peryt TM, Peryt D, Jasionowskia M, Poberezhskyy AV, Durakiewiczd T (2004) Post-evaporitic restricted deposition in the Middle Miocene Chokrakian-Karaganian of East Crimea (Ukraine). Sed Geol 170:21–36

    Article  Google Scholar 

  • Pierre C, Rouchy JM (1988) The carbonate replacements after sulfate evaporites in the Middle Miocene of Egypt. J Sed Petrol 58:446–456

    Google Scholar 

  • Popa R, Kinkle BK, Badescu A (2004) Pyrite framboids as biomarkers for iron-sulfur system. Geomicrobiol J 21:193–206

    Article  Google Scholar 

  • Preto N (2012) Petrology of carbonate beds from the stratotype of the Carnian (Stuores Wiesen section, Dolomites, Italy): the contribution of platform-derived microbialites. Geo Alp 9:12–29

    Google Scholar 

  • Qing H (1998) Petrography and geochemistry of early-stage, fine- and medium-crystalline dolomites in the Middle Devonian Presqu’ile Barrier at Pine Point, Canada. Sedimentology 45:433–446

    Article  Google Scholar 

  • Rivadeneyra MA, Parraga J, Delgado R, Ramos-Cormenzana A, Delgado G (2004) Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecol 48:39–46

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Wiley, New York, p 352

    Google Scholar 

  • Rosell L, Ortí F, Kasprzyk A, Playá E, Peryt TM (1998) Strontium geochemistry of Miocene primary gypsum: messinian of southeastern Spain and Sicily and Badenian of Poland. J Sed Res 68:63–79

    Article  Google Scholar 

  • Rouchy JM, Taberner C, Blanc-Valleron MM, Sprovieri R, Russell M, Pierre C, Di Stefano E, Pueyo JJ, Caruso A, Dinare`s-Turell J, Gomis-Coll E, Wolff GA, Cespuglio G, Ditchfield P, Pestrea S, Combourieu-Nebout N, Santisteban C, Grimalt JO (1998) Sedimentary and diagenetic markers of the restriction in a marine basin: the Lorca Basin (SE Spain) during the Messinian. Sed Geol 121:23–55

    Article  Google Scholar 

  • Rouchy JM, Taberner C, Peryt TM (2001) Sedimentary and diagenetic transitions between carbonates and evaporites. Sed Geol 140:1–8

    Article  Google Scholar 

  • Sánchez-Román M, Rivadeneyra MA, Vasconcelos C, McKenzie JA (2007) Biomineralization of carbonate and phosphate by moderately halophilic bacteria. FEMS Microbiol Ecol 61:273–284. doi:10.1111/j1574-6941200700336x

    Article  Google Scholar 

  • Sánchez-Román M, Vasconcelos C, Warthmann RJ, Rivadeneyra MA, McKenzie JA (2009) Microbial dolomite precipitation under aerobic conditions: results from Brejo do Espinho Lagoon (Brazil) and culture experiments. In: Swart PK, Eberli GP, McKenzie JA (eds) Perspectives in sedimentary geology: a tribute to the career of Ginsburg, RN. International Association of Sedimentologists, Special Publication, vol 41, pp 167–178

  • Sanz-Rubio E, Sánchez-Moral S, Cañaverasc JC, Calvod JP, Rouchy JM (2001) Calcitization of Mg–Ca carbonate and Ca sulphate deposits in a continental Tertiary basin (Calatayud Basin, NE Spain). Sed Geol 140:123–142

    Article  Google Scholar 

  • Spadafora A, Perri E, Mckenzie J, Vasconcelos C (2010) Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites. Sedimentology 57:27–40

    Article  Google Scholar 

  • Staudt W, Oswald E, Schoonen MAA (1993) Determination of sodium, chloride, and sulfate in dolomits: a new technique to constrain the composition of dolomitizing fluids. Chem Geol 107:97–109

    Article  Google Scholar 

  • Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem Geol 80:261–279

    Google Scholar 

  • Tamish M, Holail H, El-Askary M, Mansour AS (1996) Lithostratigraphy, facies analysis and depositional environments of the Middle Miocene carbonate rocks, north Western Desert, Egypt. Bull Fac Sci, Alex Univ 36:251–264

    Google Scholar 

  • Teal CS, Mazzullo SJ, Bischoff WD (2000) Dolomitization of Holocene shallow marine deposits mediated by sulfate reduction and methanogenesis in normal-salinity seawater, Northern Belize. J Sed Res 70:649–663

    Article  Google Scholar 

  • Teske A, Ramsing N, Habicht K, Fukui M, Küver J, Jørgensen B, Cohen Y (1998) Sulfate-educing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl Environ Microbiol 64(8):2943–2951

    Google Scholar 

  • Van Lith Y, Warthmann R, Vasconcelos C, McKenzie JA (2003) Sulphate reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology 1:71–79

    Article  Google Scholar 

  • Vasconcelos C, McKenzie JA (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sed Res 67:378–390

    Google Scholar 

  • Vasconcelos C, Mckenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220–222

    Article  Google Scholar 

  • Veizer J (1983) Chemical diagenesis of carbonates: theory and application of trace element technique. In: Arthur MA, Anderson TF (eds) Stable isotopes in sedimentary geology, Society of Economic Paleontologists and Mineralogists, short course, vol 10, pp 3-1 to 3-100

  • Visscher PT, Reid RP, Bebout BM (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithifies micritic laminae in modern marine stromatolites. Geology 28:919–922

    Article  Google Scholar 

  • Wali AM (1993) Gharbaniyat stromatolitic gypsum (west Alexandria): a clue for hypersaline syndepositional feature. Bull Fac Sci, Zagazig Univ 15:399–422

    Google Scholar 

  • Warren J (2000) Dolomite: occurrence, evolution and economically important associations. Earth Sci Rev 52:1–81

    Article  Google Scholar 

  • Wright DT, Oren A (2005) Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiol J 22:27–53

    Article  Google Scholar 

  • Wright DT, Wacey D (2005) Precipitation of dolomite using sulphate-reducing bacteria from the Coorong region, south Australia: significance and implications. Sedimentology 52:987–1008

    Article  Google Scholar 

  • Youssef EA (1988) Sedimentological studies of Neogene evaporites in the northern Western Desert, Egypt. Sed Geol 59:261–273

    Article  Google Scholar 

  • Youssef EA, Kamel AA (1985) Depositional environment of Dir El Biraqat evaporites, north Western Desert, Egypt. Bull Fac Sci, Cairo Univ 53:377–396

    Google Scholar 

Download references

Acknowledgments

My thanks to Prof. N. L. Guinasso and R. Sassen (GERG, University of Texas A & M, College Station, USA) for their help in mineralogical and isotopic analyses and Prof. R. I. Rifai (Menufiya University, Egypt) for chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed S. Mansour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, A.S. Sedimentology and environmental interpretation of carbonate deposits associating the evaporites-bearing Miocene succession, northern Western Desert, Egypt. Carbonates Evaporites 30, 167–179 (2015). https://doi.org/10.1007/s13146-014-0200-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-014-0200-y

Keywords

Navigation