Skip to main content
Log in

The Role of F-18 FDG PET/CT in Intrahepatic Cholangiocarcinoma

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the diagnostic and prognostic role of metabolic parameters of FDG PET/CT in patients with intrahepatic cholangiocarcinoma (ICC).

Methods

From December 2008 to December 2013, 76 FDG PET/CT scans performed for initial staging of ICC in a single institution (57 male and 19 female; mean age 68 ± 9 years) were retrospectively reviewed. Patients with history of other known malignancy were excluded. Detection rates of regional lymph node and distant metastasis by FDG PET/CT were analyzed in comparison with conventional imaging modalities such as CT or MRI. Metabolic parameters including maximum, peak and mean standardized uptake values (SUVmax, SUVpeak, SUVmean), metabolic tumor volume (MTV), total lesion glycolysis (TLG), glucose corrected SUV (SUVgluc), and glucose corrected TLG (TLGgluc) were measured for the primary tumor. Cut-off values for the metabolic parameters were calculated by ROC curve analysis, and used to dichotomize the patient groups. The overall survival time (OS) was calculated and compared using the Cox proportional hazard regression analysis.

Results

The median duration of follow-up period was 5.4 months (interquartile range: 1.45∼15.45). FDG PET/CT showed higher sensitivity than conventional imaging modalities in detection of regional node involvement (74.5 % vs. 61.8 %, p = 0.013). In six patients, distant metastasis was identified only by FDG PET/CT. The mean SUVmax, SUVpeak, SUVmean, MTV, and TLG for the primary tumor were 8.2 ± 3.1, 6.8 ± 2.5, 4.0 ± 0.8, 192.7 ± 360.5 cm3, and 823.7 ± 1615.4, respectively. Patients with higher (≥7.3, HR: 4.280, p = 0.001), higher SUVpeak (≥6.5, HR: 2.333, p = 0.020), higher SUVmean (≥3.9, HR: 2.799, p = 0.004), higher SUVgluc (≥8.1, HR: 2.648, p = 0.012), and higher TLGgluc (≥431.6, HR: 2.186, p = 0.030) showed significantly shorter survival time. By multivariate study, operability was an independent prognostic factor for longer survival (HR: 4.113, p = 0.005).

Conclusion

FDG PET/CT is an important diagnostic imaging tool in the nodal staging and detection of distant metastasis in ICC patients. Metabolic parameters may have a significant role as prognostic factors in patients with ICC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet. 2005;366(9493):1303–14.

    Article  PubMed  Google Scholar 

  2. Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis. 2004;24:115–25.

    Article  PubMed  Google Scholar 

  3. Mouzas IA, Dimoulios P, Vlachonikolis IG, Skordilis P, Zoras O, Kouroumalis E. Increasing incidence of cholangiocarcinoma in Crete 1992-2000. Anticancer Res. 2002;22:3637–41.

    PubMed  Google Scholar 

  4. Taylor-Robinson SD, Toledano MB, Arora S, Keegan TJ, Hargreaves S, Beck A, et al. Increase in mortality rates from intrahepatic cholangiocarcinoma in England and Wales 1968-1998. Gut. 2001;48:816–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shaib YH, Davila JA, McGlynn K, El-Serag HB. Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? J Hepatol. 2004;40:472–7.

    Article  PubMed  Google Scholar 

  6. Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology. 2001;33:1353–7.

    Article  CAS  PubMed  Google Scholar 

  7. Khan SA, Davidson BR, Goldin RD, Heaton N, Karani J, Pereira SP, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut. 2012;61(12):1657–69.

    Article  CAS  PubMed  Google Scholar 

  8. Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment and Prognosis for Patients With Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-analysis. JAMA Surg. 2014;149(6):565–74.

    Article  PubMed  Google Scholar 

  9. Albazaz R, Patel CN, Chowdhury FU, Scarsbrook AF. Clinical impact of FDG PET-CT on management decisions for patients with primary biliary tumours. Insights Imaging. 2013;4:691–700.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim JY, Kim MH, Lee TY, Hwang CY, Kim JS, Yun SC, et al. Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol. 2008;103:1145–51.

    Article  PubMed  Google Scholar 

  11. Park SK, Kim YS, Kim SG, Jang JY, Moon JH, Lee MS, et al. Detection of distant metastasis to skeletal muscle by 18F-FDG-PET in a case of intrahepatic cholangiocarcinoma. Korean J Hepatol. 2010;16:325–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reinhardt MJ, Strunk H, Gerhardt T, Roedel R, Jaeger U, Bucerius J, et al. Detection of Klatskin’s tumor in extrahepatic bile duct strictures using delayed 18F-FDG PET/CT: preliminary results for 22 patient studies. J Nucl Med. 2005;46:1158–63.

    PubMed  Google Scholar 

  13. Annunziata S, Caldarella C, Pizzuto DA, Galiandro F, Sadeghi R, Giovanella L, et al. Diagnostic accuracy of fluorine-18-fluorodeoxyglucose positron emission tomography in the evaluation of the primary tumor in patients with cholangiocarcinoma: a meta-analysis. Biomed Res Int. 2014;2014:247693.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fujita N, Asayama Y, Nishie A, Ishigami K, Ushijima Y, Takayama Y et al. Mass-forming intrahepatic cholangiocarcinoma: Enhancement patterns in the arterial phase of dynamic hepatic CT - Correlation with clinicopathological findings. Eur Rad. 2016.

  15. Manfredi R, Barbaro B, Masselli G, Vecchioli A, Marano P. Magnetic resonance imaging of cholangiocarcinoma. Semin Liver Dis. 2004;24:155–64.

    Article  PubMed  Google Scholar 

  16. Hepatobiliary (NCCN guideline). NCCN clinical practice guidelines in oncology, Version 2. 2015.

  17. Wang Y, Li J, Xia Y, Gong R, Wang K, Yan Z, et al. Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J Clin Oncol. 2013;31:1188–95.

    Article  PubMed  Google Scholar 

  18. Ribero D, Pinna AD, Guglielmi A, Ponti A, Nuzzo G, Giulini SM, et al. Surgical Approach for Long-term Survival of Patients With Intrahepatic Cholangiocarcinoma: A Multi-institutional Analysis of 434 Patients. Arch Surg. 2012;147:1107–13.

    Article  PubMed  Google Scholar 

  19. Sonbare DJ. Influence of surgical margins on outcome in patients with intrahepatic cholangiocarcinoma: a multicenter study by the AFC-IHCC-2009 Study Group. Ann Surg. 2014;259:e36.

    Article  PubMed  Google Scholar 

  20. de Jong MC, Nathan H, Sotiropoulos GC, Paul A, Alexandrescu S, Marques H, et al. Intrahepatic cholangiocarcinoma: an international multi-institutional analysis of prognostic factors and lymph node assessment. J Clin Oncol. 2011;29:3140–5.

    Article  PubMed  Google Scholar 

  21. Feydy A, Vilgrain V, Denys A, Sibert A, Belghiti J, Vullierme MP, et al. Helical CT assessment in hilar cholangiocarcinoma: correlation with surgical and pathologic findings. AJR Am J Roentgenol. 1999;172:73–7.

    Article  CAS  PubMed  Google Scholar 

  22. Kluge R, Schmidt F, Caca K, Barthel H, Hesse S, Georgi P, et al. Positron emission tomography with [(18)F]fluoro-2-deoxy-D-glucose for diagnosis and staging of bile duct cancer. Hepatology. 2001;33:1029–35.

    Article  CAS  PubMed  Google Scholar 

  23. Park TG, Yu YD, Park BJ, Cheon GJ, Oh SY, Kim DS, et al. Implication of lymph node metastasis detected on 18F-FDG PET/CT for surgical planning in patients with peripheral intrahepatic cholangiocarcinoma. Clin Nucl Med. 2014;39:1–7.

    Article  PubMed  Google Scholar 

  24. Kim YJ, Yun M, Lee WJ, Kim KS, Lee JD. Usefulness of 18F-FDG PET in intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging. 2003;30:1467–72.

    Article  PubMed  Google Scholar 

  25. Jo I, Won KS, Kim SH, Song B-I, Kang YN, Kim JY. Catheter Tract Implantation Metastasis Diagnosed by F-18 FDG PET/CT After Percutaneous Transhepatic Biliary Drainage for Hilar Cholangiocarcinoma. Nucl Med Mol Imaging. 2014;48:326–7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kato T, Tsukamoto E, Kuge Y, Katoh C, Nambu T, Nobuta A, et al. Clinical role of (18)F-FDG PET for initial staging of patients with extrahepatic bile duct cancer. Eur J Nucl Med Mol Imaging. 2002;29:1047–54.

    Article  CAS  PubMed  Google Scholar 

  27. Fritscher-Ravens A, Bohuslavizki KH, Broering DC, Jenicke L, Schafer H, Buchert R, et al. FDG PET in the diagnosis of hilar cholangiocarcinoma. Nucl Med Commun. 2001;22:1277–85.

    Article  CAS  PubMed  Google Scholar 

  28. Petrowsky H, Wildbrett P, Husarik DB, Hany TF, Tam S, Jochum W, et al. Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J Hepatol. 2006;45:43–50.

    Article  PubMed  Google Scholar 

  29. Kawarada Y, Yamagiwa K, Das BC. Analysis of the relationships between clinicopathologic factors and survival time in intrahepatic cholangiocarcinoma. Am J Surg. 2002;183:679–85.

    Article  PubMed  Google Scholar 

  30. Li SQ, Liang LJ, Hua YP, Peng BG, He Q, Lu MD et al. Long-term outcome and prognostic factors of intrahepatic cholangiocarcinoma. Chin Med J (Engl). 2009;122:2286-91.

  31. Kitamura K, Hatano E, Higashi T, Seo S, Nakamoto Y, Narita M, et al. Prognostic value of (18)F-fluorodeoxyglucose positron emission tomography in patients with extrahepatic bile duct cancer. J Hepatobiliary Pancreat Sci. 2011;18:39–46.

    Article  PubMed  Google Scholar 

  32. Cho KM, Oh DY, Kim TY, Lee KH, Han SW, Im SA, et al. Metabolic Characteristics of Advanced Biliary Tract Cancer Using F-18-Fluorodeoxyglucose Positron Emission Tomography and Their Clinical Implications. Oncologist. 2015;20:926–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Min M, Lin P, Lee MT, Shon IH, Lin M, Forstner D et al. Prognostic role of metabolic parameters of F-FDG PET-CT scan performed during radiation therapy in locally advanced head and neck squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2015; doi: 10.1007/s00259-015-3104-8.

  34. Park SB, Choi JY, Moon SH, Yoo J, Kim H, Ahn YC, et al. Prognostic value of volumetric metabolic parameters measured by [18F]fluorodeoxyglucose-positron emission tomography/computed tomography in patients with small cell lung cancer. Cancer Imaging. 2014;14:2.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ie Ryung Yoo.

Ethics declarations

This study was not funded.

Conflict of Interest

Yeongjoo Lee, Ie Ryung Yoo, Sun Ha Boo, Hyoungwoo Kim, Hye Lim Park, and Joo Hyun O declare that they have no conflict of interest.

Ethical Statement

The study was approved by an institutional review board or equivalent and has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. The institutional review board waived the need to obtain informed consent.

Ethical Approvement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Yoo, I.R., Boo, S.H. et al. The Role of F-18 FDG PET/CT in Intrahepatic Cholangiocarcinoma. Nucl Med Mol Imaging 51, 69–78 (2017). https://doi.org/10.1007/s13139-016-0440-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-016-0440-y

Keywords

Navigation