Skip to main content
Log in

Current Status and Future Direction of Nanomedicine: Focus on Advanced Biological and Medical Applications

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Nanotechnology is the engineering and manipulation of materials and devices with sizes in the nanometer range. Colloidal gold, iron oxide nanoparticles and quantum dot semiconductor nanocrystals are examples of nanoparticles, with sizes generally ranging from 1 to 20 nm. These nanotechnologies have been researched tremendously in the last decade and this has led to a new area of “nanomedicine” which is the application of nanotechnology to human health-care for diagnosis, monitoring, treatment, prediction and prevention of diseases. Recently progress has been made in overcoming some of the difficulties in the human use of nanomedicines. In the mid-1990s, Doxil was approved by the FDA, and now various nanoconstructs are on the market and in clinical trials. However, there are many obstacles in the human application of nanomaterials. For translation to clinical use, a detailed understanding is needed of the chemical and physical properties of particles and their pharmacokinetic behavior in the body, including their biodistribution, toxicity, and biocompatibility. In this review, we provide a broad introduction to nanomedicines and discuss the preclinical and clinical trials in which they have been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. National Science and Technology Council Committee on Technology, The National Nanotechnology Initiative: research and development leading to a revolution in technology and industry, Office of Sciences and Technology Policy, Washington, DC. 2005. http://www.nano.gov/.

  2. Wang R, Billone PS, Mullett WM. Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J Nanomater. 2013:629681.

  3. Nanomedicine: grounds for optimism, and a call for papers. Lancet. 2003;362:673.

  4. Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomed. 2007;2:129–41.

    CAS  Google Scholar 

  5. Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater. 2010;2:23–30.

    Article  Google Scholar 

  6. Di Marco M, Sadun C, Port M, Guilbert I, Couvreur P, Dubernet C. Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomedicine. 2007;2:609–22.

    PubMed  PubMed Central  Google Scholar 

  7. Bronzino JD, Peterson DR. Biomedical signals, imaging, and informatics. In: Yuan C, Kerwin WS, Canton G, Wang J, Chen H, Balu N, editors. Magnetic resonance imaging of atherosclerosis. Boca Raton: CRC Press; 2015. pp. 16–33.

  8. Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM. Stem cell tracking using iron oxide nanoparticles. Int J Nanomed. 2014;9:1641–53.

    CAS  Google Scholar 

  9. Mohapatra M, Anaud S. Synthesis and applications of nano-structured iron oxide/hydroxides – a review. Int J Eng Sci Technol. 2010;2:127–46.

    Google Scholar 

  10. Lee CM, Cheong SJ, Kim EM, Lim ST, Jeong YY, Sohn MH, et al. Nonpolymeric surface-coated iron oxide nanoparticles for in vivo molecular imaging: biodegradation, biocompatibility, and multiplatform. J Nucl Med. 2013;54:1974–80.

    Article  CAS  PubMed  Google Scholar 

  11. Hu R, Ma S, Li H, Ke X, Wang G, Wei D, et al. Effect of magnetic fluid hyperthermia on lung cancer nodules in a murine model. Oncol Lett. 2011;2:1161–4.

    PubMed  PubMed Central  Google Scholar 

  12. Chatterjee DK, Diagaradjane P, Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv. 2011;2:1001–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang F, Xu CL, Liu CM. Drug delivery strategies to enhance the permeability of the blood–brain barrier for treatment of glioma. Drug Des Devel Ther. 2015;9:2089–100.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Widder KJ, Morris RM, Poore G, Howard Jr DP, Senyei AE. Tumor remission in Yosida sarcoma-bearing rats by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc Natl Acad Sci U S A. 1981;78:579–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang X, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Matson VZ, et al. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano. 2010;4:6805–17.

    Article  CAS  PubMed  Google Scholar 

  16. Hwu JR, Lin YS, Josephrajan T, Hsu MH, Cheng FY, Yeh CS, et al. Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc. 2009;131:66–8.

    Article  CAS  PubMed  Google Scholar 

  17. Lammers T, Kiesling F, Hennink WE, Storm G. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm. 2010;7:1899–912.

    Article  CAS  PubMed  Google Scholar 

  18. Fan CH, Ting CY, Lin HJ, Wang CH, Liu HL, Yen TC, et al. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials. 2013;34:3706–15.

    Article  CAS  PubMed  Google Scholar 

  19. de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol. 2005;23:1407–13.

    Article  PubMed  Google Scholar 

  20. Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders – how to make it work. Nat Med. 2004;10:S42–50.

    Article  PubMed  Google Scholar 

  21. Gaudet JM, Ribot EJ, Chen Y, Gilbert KM, Foster PJ. Tracking the fate of stem cell implants with fluorine-19 MRI. PLoS One. 2015;10:e0118544.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ahrens ET, Helfer BM, O’Hanlon CF, Schirda C. Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med. 2014;72:1696–701.

  23. Zhou H, Hou X, Liu Y, Zhao T, Shang Q, Tang J, et al. Superstable magnetic nanoparticles in conjugation with near-infrared dye as a multimodal theranostic platform. ACS Appl Mater Interfaces. 2016;24:4424–33.

    Article  Google Scholar 

  24. Lee CM, Jang D, Kim J, Cheong SJ, Kim EM, Jeong MH, et al. Oleyl-chitosan nanoparticles based on a dual probe for optical/MR imaging in vivo. Bioconjug Chem. 2011;22:186–92.

    Article  CAS  PubMed  Google Scholar 

  25. Alarifi S, Ali D, Alkahtani S, Alhader MS. Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line. Biol Trace Elem Res. 2014;159:416–24.

    Article  CAS  PubMed  Google Scholar 

  26. Frens G. Controlled nucleation for the regulation of particle size in monodisperse gold suspensions. Nat Phys Sci. 1972;241:20–2.

    Article  Google Scholar 

  27. Linka S, El-Sayeda MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem. 2000;l:409–53.

    Article  Google Scholar 

  28. Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40:1647–71.

    Article  CAS  PubMed  Google Scholar 

  29. Alkilany AM, Yaseen AB, Kailani MH. Synthesis of monodispersed gold nanoparticles with exceptional colloidal stability with grafted polyethylene glycol-g-polyvinyl alcohol. J Nanomater. 2015;712359.

  30. Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, et al. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small. 2006;2:766–73.

    Article  CAS  PubMed  Google Scholar 

  31. Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH. Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology. 2010;4:120–37.

    Article  CAS  PubMed  Google Scholar 

  32. Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine. 2015;10:321–41.

    Article  CAS  PubMed  Google Scholar 

  33. Kumar C. Raman spectroscopy for nanomaterials characterization. In: Jeong DH, Kim G, Lee YS, Jun BH, editors. Immunoassays and imaging based on surface-enhanced Raman spectroscopy. New York: Springer; 2012. pp. 263.

  34. Pieczonka NP, Aroca RF. Single molecule analysis by surfaced-enhanced Raman scattering. Chem Soc Rev. 2008;37:946–54.

    Article  CAS  PubMed  Google Scholar 

  35. Andreou C, Kishore SA, Kircher MF. Surface-enhanced Raman spectroscopy: a new modality for cancer imaging. J Nucl Med. 2015;56:1295–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen YS, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011;11:348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhong J, Wen L, Yang S, Xiang L, Chen Q, Xing D. Imaging-guided high-efficient photoacoustic tumor therapy with targeting gold nanorods. Nanomedicine. 2015;11:1499–509.

    Article  CAS  PubMed  Google Scholar 

  38. Hwang S, Nam J, Jung S, Song J, Doh H, Kim S. Gold nanoparticle-mediated photothermal therapy: current status and future perspective. Nanomedicine. 2014;9:2003–22.

    Article  CAS  PubMed  Google Scholar 

  39. Huang X, El-Sayeda MA. Plasmonic photo-thermal therapy (PPTT). Alexandria J Med. 2011;47:1–9.

    Article  CAS  Google Scholar 

  40. Li Z, Huang H, Tang S, Li Y, Yu XF, Wang H, et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials. 2016;74:144–54.

    Article  CAS  PubMed  Google Scholar 

  41. Piao JG, Wang L, Gao F, You YZ, Xiong Y, Yang L. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano. 2014;8:10414–25.

    Article  CAS  PubMed  Google Scholar 

  42. Rengan AK, Bukhari AB, Pradhan A, Malhotra R, Banerjee R, Srivastava R, et al. In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett. 2015;15:842–8.

    Article  CAS  PubMed  Google Scholar 

  43. Leuvering JH, Thal PJ, van der Waart M, Schuurs AH. Sol particle immunoassay (SPIA). J Immunoassay. 1980;1:77–91.

    Article  CAS  PubMed  Google Scholar 

  44. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382:607–9.

    Article  CAS  PubMed  Google Scholar 

  45. Libutti SK, Paciotti GF, Byrnes AA, Alexander Jr HR, Gannon WE, Walker M, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 2010;16:6139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, et al. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007;3:1941–9.

    Article  CAS  PubMed  Google Scholar 

  47. Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 2009;4:858–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    Article  CAS  PubMed  Google Scholar 

  49. Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces. 2008;66:274–80.

    Article  CAS  PubMed  Google Scholar 

  50. Kosaka N, McCann TE, Mitsunaga M, Choyke PL, Kobayashi H. Real-time optical imaging using quantum dot and related nanocrystals. Nanomedicine. 2010;5:765–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009;5:2067–76.

    Article  CAS  PubMed  Google Scholar 

  52. Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–8.

    Article  CAS  PubMed  Google Scholar 

  53. Tarantola M, Pietuch A, Schneider D, Rother J, Sunnick E, Rosman C, et al. Toxicity of gold-nanoparticles: synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology. 2011;5:254–68.

    Article  CAS  PubMed  Google Scholar 

  54. Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem. 2004;15:897–900.

    Article  CAS  PubMed  Google Scholar 

  55. Sereemaspun A, Rojanathanes R, Wiwanitkit V. Effect of gold nanoparticle on renal cell: an implication for exposure risk. Ren Fail. 2008;30:323–5.

    Article  CAS  PubMed  Google Scholar 

  56. Uchiyama MK, Deda DK, Rodrigues SF, Drewes CC, Bolonheis SM, Kiyohara PK, et al. In vivo and in vitro toxicity and anti-inflammatory properties of gold nanoparticle bioconjugates to the vascular system. Toxicol Sci. 2014;142:497–507.

    Article  CAS  PubMed  Google Scholar 

  57. Klien K, Godnić-Cvar J. Genotoxicity of metal nanoparticles: focus on in vivo studies. Arh Hig Rada Toksikol. 2012;63:133–45.

    Article  CAS  PubMed  Google Scholar 

  58. Jung S, Bang M, Kim BS, Lee S, Kotov NA, Kim B, et al. Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS One. 2014;9:e91360.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sousa F, Mandal S, Garrovo C, Astolfo A, Bonifacio A, Latawiec D, et al. Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale. 2010;2:2826–34.

    Article  CAS  PubMed  Google Scholar 

  60. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115:8706–15.

    Article  CAS  Google Scholar 

  61. Chung Leland WK, Isaacs WB, Simons JW. Prostate cancer: biology, genetics, and the new therapeutics. In: Gao X, Xing Y, Chung Leland WK, Nie S, editors. Quantum dot nanotechnology for prostate cancer research. Totowa: Humana Press; 2007. pp. 231.

  62. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID. Biocompatible quantum dots for biological applications. Chem Biol. 2011;18:10–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McBride J, Treadway J, Feldman LC, Pennycook SJ, Rosenthal SJ. Structural basis for near unity quantum yield core/shell nanostructures. Nano Lett. 2006;6:1496–501.

    Article  CAS  PubMed  Google Scholar 

  64. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007;28:4717–32.

    Article  CAS  PubMed  Google Scholar 

  65. Michalet X, Pinaud F, Bentolila L, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–44.

  66. Chuang PH, Lin CC, Liu RS. Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index. ACS Appl Mater Interfaces. 2014;6:15379–87.

    Article  CAS  PubMed  Google Scholar 

  67. Zhou J, Yang Y, Zhang CY. Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev. 2015;115:11669–717.

    Article  CAS  PubMed  Google Scholar 

  68. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22:93–7.

    Article  CAS  PubMed  Google Scholar 

  69. Wang LW, Peng CW, Chen C, Li Y. Quantum dots-based tissue and in vivo imaging in breast cancer researches: current status and future perspectives. Breast Cancer Res Treat. 2015;151:7–17.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Erogbogbo F, Yong KT, Roy I, Hu R, Law WC, Zhao W, et al. In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano. 2011;5:413–23.

    Article  CAS  PubMed  Google Scholar 

  71. Pons T, Pic E, Lequeux N, Cassette E, Bezdetnaya L, Guillemin F, et al. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano. 2010;4:2531–8.

    Article  CAS  PubMed  Google Scholar 

  72. Kierny MR, Cunningham TD, Kay BK. Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms. Nano Rev. 2012;3:17240.

    Article  CAS  Google Scholar 

  73. Ding K, Jing L, Liu C, Hou Y, Gao M. Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors. Biomaterials. 2014;35:1608–17.

    Article  CAS  PubMed  Google Scholar 

  74. Helms V. Fluorescence resonance energy transfer. Principles of computational cell biology. Weinheim: Wiley-VCH; 2008.

    Google Scholar 

  75. Medintz IL, Goldman ER, Lassman ME, Mauro JM. A fluorescence resonance energy transfer sensor based on maltose binding protein. Bioconjug Chem. 2003;14:909–18.

    Article  CAS  PubMed  Google Scholar 

  76. So MK, Xu C, Loening AM, Gambhir SS, Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol. 2006;24:339–43.

    Article  CAS  PubMed  Google Scholar 

  77. Huang X, Li L, Qian H, Dong C, Ren J. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed Engl. 2006;45:5140–3.

    Article  CAS  PubMed  Google Scholar 

  78. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003;21:41–6.

  79. Pantel K, Alix-Panabières C. Cell lines from circulating tumor cells. Oncoscience. 2015;2:815–6.

    PubMed  PubMed Central  Google Scholar 

  80. Zhang H, Fu X, Hu J, Zhu Z. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels. Anal Chim Acta. 2013;779:64–71.

    Article  CAS  PubMed  Google Scholar 

  81. Costa C, Abal M, López-López R, Muinelo-Romay L. Biosensors for the detection of circulating tumour cells. Sensors (Basel). 2014;14:4856–75.

    Article  Google Scholar 

  82. Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. 2011;939161.

Download references

Acknowledgments

This work was supported by the Radiation Technology R&D program (2012M2A2A7014020, and 2015M2A2A6A04044884) through the National Research Foundation of Korea and the Mid-Carrier Researcher Program (2011–028581) funded by the Ministry of Science, ICT and Future Planning, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan-Jeong Jeong.

Ethics declarations

Conflicts of Interest

Eun-Mi Kim and Hwan-Jeong Jeong declare that they have no conflicts of interest.

Ethical Approval

This article does not describe any studies with human participants or animals performed by any of the authors.

This manuscript has not been published before and is not under consideration for publication anywhere else and has been approved by all the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, EM., Jeong, HJ. Current Status and Future Direction of Nanomedicine: Focus on Advanced Biological and Medical Applications. Nucl Med Mol Imaging 51, 106–117 (2017). https://doi.org/10.1007/s13139-016-0435-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-016-0435-8

Keywords

Navigation