Skip to main content

Advertisement

Log in

Can Initial 18F-FDG PET-CT Imaging Give Information on Metastasis in Patients with Primary Renal Cell Carcinoma?

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the relationship between the maximum standardized uptake values (SUVmax) of primary renal cancers with and without metastatic lesions, if any. We also studied the relationship between the size of primary renal cancers and their SUVmax, and tried to find a clinical value of 18F-FDG PET-CT for the initial evaluation of renal cell carcinoma (RCC).

Methods

The cases of 23 patients, 16 men and 7 women, who underwent PET-CT examination before operation were retrospectively reviewed. We measured the SUVmax of the primary renal cancers and those of any existing metastatic lesions, and the size of the primary renal cancers. We compared the SUVmax of primary RCCs with metastases and those without metastases, SUVmax of primary RCC and those of metastases, and studied the correlation between the size and SUVmax of primary RCCs.

Results

The SUVmax of primary RCC of the 16 patients without metastasis ranged from 1.1 to 5.6 with a median value of 2.6. Those of the patients with metastasis ranged from 2.9 to 7.6 with a median of 5.0. The size of the all 23 primary renal cancers ranged from 1.7 cm to 13.5 cm, with a median of 4.5 cm, and their SUVmax ranged from 1.1 to 7.6, with a median of 2.9. There was a statistically significant difference between the SUVmax of the primary RCC with metastasis (5.3 ± 1.7) and those without metastasis (2.9 ± 1.0). There was a moderate positive correlation between the sizes and SUVmax of all 23 primary RCCs. However, there was no statistically significant correlation between the sizes and SUVmax of primary RCCs with metastatic lesions and the same for RCCs without metastasis. The cutoff value of SUVmax for predicting extra-renal lesion was 4.4 and that for size was 5.8 cm according to the receiver operating characteristic curves.

Conclusions

Those who have primary RCC with high SUVmax are suggested to have a likelihood of metastasis. Also, there was a moderate trend of increasing value of SUVmax of primary RCC as their size increases. Physicians should beware of missing extra-renal lesions elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ljungberg B, Campbell SC, Choi HY, Jacqmin D, Lee JE, Weikert S, et al. The epidemiology of renal cell carcinoma. Eur Urol. 2011;60:615–21.

    Article  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  4. Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med. 2005;353:2477–90.

    Article  CAS  PubMed  Google Scholar 

  5. Scosyrev E, Messing J, Noyes K, Veazie P, Messing E. Surveillance epidemiology and end results (SEER) program and population-based research in urologic oncology: an overview. Urol Oncol. 2012;30:126–32.

    Article  PubMed  Google Scholar 

  6. Cook A, Lorenzo AJ, Salle JL, Bakhshi M, Cartwright LM, Bagi D, et al. Pediatric renal cell carcinoma: single institution 25-year case series and initial experience with partial nephrectomy. J Urol. 2006;175:1456–60. discussion 60.

    Article  PubMed  Google Scholar 

  7. Thompson RH, Ordonez MA, Iasonos A, Secin FP, Guillonneau B, Russo P, et al. Renal cell carcinoma in young and old patients—is there a difference? J Urol. 2008;180:1262–6. discussion 6.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373:1119–32.

    Article  CAS  PubMed  Google Scholar 

  9. Hollingsworth JM, Miller DC, Daignault S, Hollenbeck BK. Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst. 2006;98:1331–4.

    Article  PubMed  Google Scholar 

  10. Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev. 2008;34:193–205.

    Article  PubMed  Google Scholar 

  11. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61:212–36.

    Article  PubMed  Google Scholar 

  12. Guo HF, Song Y, Na YQ. Value of abdominal ultrasound scan, CT and MRI for diagnosing inferior vena cava tumour thrombus in renal cell carcinoma. Chin Med J (Engl). 2009;122:2299–302.

    PubMed  Google Scholar 

  13. Hallscheidt PJ, Fink C, Haferkamp A, Bock M, Luburic A, Zuna I, et al. Preoperative staging of renal cell carcinoma with inferior vena cava thrombus using multidetector CT and MRI: prospective study with histopathological correlation. J Comput Assist Tomogr. 2005;29:64–8.

    Article  PubMed  Google Scholar 

  14. Kallman DA, King BF, Hattery RR, Charboneau JW, Ehman RL, Guthman DA, et al. Renal vein and inferior vena cava tumor thrombus in renal cell carcinoma: CT, US, MRI and venacavography. J Comput Assist Tomogr. 1992;16:240–7.

    Article  CAS  PubMed  Google Scholar 

  15. Ozawa N, Okamura T, Koyama K, Hamazawa Y, Senzaki H, Tanabe S, et al. Usefulness of F-18 FDG-PET in a long-term hemodialysis patient with renal cell carcinoma and pheochromocytoma. Ann Nucl Med. 2007;21:239–43.

    Article  PubMed  Google Scholar 

  16. Sizemore AW, Jacobs MP, Mantil JC, Hahm GK. FDG uptake in inferior vena cava tumor thrombus from renal cell carcinoma on positron emission tomography. Clin Nucl Med. 2007;32:309–11.

    Article  PubMed  Google Scholar 

  17. de Llano SR M, Delgado-Bolton RC, Jimenez-Vicioso A, Perez-Castejon MJ, Carreras Delgado JL, Ramos E, et al. Meta-analysis of the diagnostic performance of 18F-FDG PET in renal cell carcinoma. Rev Esp Med Nucl. 2007;26:19–29.

    Article  Google Scholar 

  18. Kumar R, Shandal V, Shamim SA, Jeph S, Singh H, Malhotra A. Role of FDG PET-CT in recurrent renal cell carcinoma. Nucl Med Commun. 2010;31:844–50.

    PubMed  Google Scholar 

  19. Rodriguez Martinez de Llano S, Jimenez-Vicioso A, Mahmood S, Carreras-Delgado JL. Clinical impact of 18F-FDG PET in management of patients with renal cell carcinoma. Rev Esp Med Nucl. 2010;29:12–9.

    Article  CAS  PubMed  Google Scholar 

  20. Nakatani K, Nakamoto Y, Saga T, Higashi T, Togashi K. The potential clinical value of FDG-PET for recurrent renal cell carcinoma. Eur J Radiol. 2011;79:29–35.

    Article  PubMed  Google Scholar 

  21. Bertagna F, Motta F, Bertoli M, Bosio G, Fisogni S, Tardanico R, et al. Role of F18-FDG-PET/CT in restaging patients affected by renal carcinoma. Nucl Med Rev Cent East Eur. 2013;16:3–8.

    Article  PubMed  Google Scholar 

  22. Bulnes Vazquez V, Alvarez-Mugica M, Fernandez Gomez JM, Nava Tomas E, Jalon Monzon A, Meilan MA. Clinicopathologic features of renal cell carcinoma incidentally detected through radiological studies. Actas Urol Esp. 2008;32:976–84.

    Article  CAS  PubMed  Google Scholar 

  23. Tsui KH, Shvarts O, Smith RB, Figlin R, de Kernion JB, Belldegrun A. Renal cell carcinoma: prognostic significance of incidentally detected tumors. J Urol. 2000;163:426–30.

    Article  CAS  PubMed  Google Scholar 

  24. Sweeney JP, Thornhill JA, Graiger R, McDermott TE, Butler MR. Incidentally detected renal cell carcinoma: pathological features, survival trends and implications for treatment. Br J Urol. 1996;78:351–3.

    Article  CAS  PubMed  Google Scholar 

  25. Nakano E, Iwasaki A, Seguchi T, Kokado Y, Yoshioka T, Sugao H, et al. Incidentally diagnosed renal cell carcinoma. Eur Urol. 1992;21:294–8.

    CAS  PubMed  Google Scholar 

  26. Kaneta T, Hakamatsuka T, Yamada T, Takase K, Sato A, Higano S, et al. FDG PET in solitary metastastic/secondary tumor of the kidney: a report of three cases and a review of the relevant literature. Ann Nucl Med. 2006;20:79–82.

    Article  PubMed  Google Scholar 

  27. Kang DE, White Jr RL, Zuger JH, Sasser HC, Teigland CM. Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol. 2004;171:1806–9.

    Article  PubMed  Google Scholar 

  28. Majhail NS, Urbain JL, Albani JM, Kanvinde MH, Rice TW, Novick AC, et al. F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J Clin Oncol. 2003;21:3995–4000.

    Article  PubMed  Google Scholar 

  29. Miyakita H, Tokunaga M, Onda H, Usui Y, Kinoshita H, Kawamura N, et al. Significance of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of renal cell carcinoma and immunohistochemical glucose transporter 1 (GLUT-1) expression in the cancer. Int J Urol. 2002;9:15–8.

    Article  PubMed  Google Scholar 

  30. Kumar R, Chauhan A, Lakhani P, Xiu Y, Zhuang H, Alavi A. 2-Deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography in characterization of solid renal masses. Mol Imaging Biol. 2005;7:431–9.

    Article  PubMed  Google Scholar 

  31. Ak I, Can C. F-18 FDG PET in detecting renal cell carcinoma. Acta Radiol. 2005;46:895–9.

    Article  CAS  PubMed  Google Scholar 

  32. Wang HY, Ding HJ, Chen JH, Chao CH, Lu YY, Lin WY, et al. Meta-analysis of the diagnostic performance of 18F FDG-PET and PET/CT in renal cell carcinoma. Cancer Imaging. 2012;12:464–74.

    Article  PubMed  Google Scholar 

  33. Nakhoda Z, Torigian DA, Saboury B, Hofheinz F, Alavi A. Assessment of the diagnostic performance of 18F-FDGPET/CT for detection and characterization of solid renal malignancies. Hell J Nucl Med. 2013;16:19–24.

    PubMed  Google Scholar 

  34. Ramdave S, Thomas GW, Berlangieri SU, Bolton DM, Davis I, Danguy HT, et al. Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Urol. 2001;166:825–30.

    Article  CAS  PubMed  Google Scholar 

  35. Aide N, Cappele O, Bottet P, Bensadoun H, Regeasse A, Comoz F, et al. Efficiency of 18F FDG PET in characterising renal cancer and detecting distant metastases: a comparison with CT. Eur J Nucl Med Mol Imaging. 2003;30:1236–45.

    Article  PubMed  Google Scholar 

  36. Jadvar H, Kherbache HM, Pinski JK, Conti PS. Diagnostic role of [F-18]-FDG positron emission tomography in restaging renal cell carcinoma. Clin Nephrol. 2003;60:395–400.

    Article  CAS  PubMed  Google Scholar 

  37. Safaei A, Figlin R, Hoh CK, Silverman DH, Seltzer M, Phelps ME, et al. The usefulness of F-18 deoxyglucose whole-body positron emission tomography (PET) for re-staging of renal cell cancer. Clin Nephrol. 2002;57:56–62.

    Article  CAS  PubMed  Google Scholar 

  38. Takenaka T, Yano T, Morodomi Y, Ito K, Miura N, Kawano D, et al. Prediction of true-negative lymph node metastasis in clinical IA non-small cell lung cancer by measuring standardized uptake values on positron emission tomography. Surg Today. 2012;42:934–9.

    Article  PubMed  Google Scholar 

  39. Oh HH, Lee SE, Choi IS, Choi WJ, Yoon DS, Min HS, et al. The peak-standardized uptake value (P-SUV) by preoperative positron emission tomography-computed tomography (PET-CT) is a useful indicator of lymph node metastasis in gastric cancer. J Surg Oncol. 2011;104:530–3.

    Article  PubMed  Google Scholar 

  40. Nambu A, Kato S, Sato Y, Okuwaki H, Nishikawa K, Saito A, et al. Relationship between maximum standardized uptake value (SUVmax) of lung cancer and lymph node metastasis on FDG-PET. Ann Nucl Med. 2009;23:269–75.

    Article  CAS  PubMed  Google Scholar 

  41. Maeda R, Isowa N, Onuma H, Miura H, Harada T, Touge H, et al. The maximum standardized 18F-fluorodeoxyglucose uptake on positron emission tomography predicts lymph node metastasis and invasiveness in clinical stage IA non-small cell lung cancer. Interact Cardiovasc Thorac Surg. 2009;9:79–82.

    Article  PubMed  Google Scholar 

  42. Lam JS, Leppert JT, Belldegrun AS, Figlin RA. Novel approaches in the therapy of metastatic renal cell carcinoma. World J Urol. 2005;23:202–12.

    Article  CAS  PubMed  Google Scholar 

  43. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56:106–30.

    Article  PubMed  Google Scholar 

  44. Sivaramakrishna B, Gupta NP, Wadhwa P, Hemal AK, Dogra PN, Seth A, et al. Pattern of metastases in renal cell carcinoma: a single institution study. Indian J Cancer. 2005;42:173–7.

    CAS  PubMed  Google Scholar 

  45. Cozzoli A, Milano S, Cancarini G, Zanotelli T, Cosciani CS. Surgery of lung metastases in renal cell carcinoma. Br J Urol. 1995;75:445–7.

    Article  CAS  PubMed  Google Scholar 

  46. Kollender Y, Bickels J, Price WM, Kellar KL, Chen J, Merimsky O, et al. Metastatic renal cell carcinoma of bone: indications and technique of surgical intervention. J Urol. 2000;164:1505–8.

    Article  CAS  PubMed  Google Scholar 

  47. Ritchie AW, Chisholm GD. The natural history of renal carcinoma. Semin Oncol. 1983;10:390–400.

    CAS  PubMed  Google Scholar 

  48. Hoetjes NJ, van Velden FH, Hoekstra OS, Hoekstra CJ, Krak NC, Lammertsma AA, et al. Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging. 2010;37:1679–87.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Chang CH, Shiau YC, Shen YY, Kao A, Lin CC, Lee CC. Differentiating solitary pulmonary metastases in patients with renal cell carcinomas by 18F-fluoro-2-deoxyglucose positron emission tomography—a preliminary report. Urol Int. 2003;71:306–9.

    Article  CAS  PubMed  Google Scholar 

  50. Uchiyama S, Haruyama Y, Asada T, Hotokezaka M, Nagamachi S, Chijiiwa K. Role of the standardized uptake value of 18-fluorodeoxyglucose positron emission tomography-computed tomography in detecting the primary tumor and lymph node metastasis in colorectal cancers. Surg Today. 2012;42:956–61.

    Article  PubMed  Google Scholar 

  51. Khalaf M, Abdel-Nabi H, Baker J, Shao Y, Lamonica D, Gona J. Relation between nodule size and 18F-FDG-PET SUV for malignant and benign pulmonary nodules. J Hematol Oncol. 2008;1:13.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Khandani AH, Cowey CL, Moore DT, Gohil H, Rathmell WK. Primary renal cell carcinoma: relationship between 18F-FDG uptake and response to neoadjuvant sorafenib. Nucl Med Commun. 2012;33:967–73.

    Article  CAS  PubMed  Google Scholar 

  53. Namura K, Minamimoto R, Yao M, Makiyama K, Murakami T, Sano F, et al. Impact of maximum standardized uptake value (SUVmax) evaluated by 18-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer. 2010;10:667.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Nobuyuki O, Noriko T, Yoko H, Kazuya T, Yoshiji M, Hironobu A, et al. Assessment of therapeutic effect of sunitinib by 11C-acetate PET compared with FDG PET imaging in a patient with metastatic renal cell carcinoma. Nucl Med Mol Imaging. 2011;45:217–9.

    Article  Google Scholar 

Download references

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Hoon Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Hwang, K.H., Kim, S.G. et al. Can Initial 18F-FDG PET-CT Imaging Give Information on Metastasis in Patients with Primary Renal Cell Carcinoma?. Nucl Med Mol Imaging 48, 144–152 (2014). https://doi.org/10.1007/s13139-013-0245-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-013-0245-1

Keywords

Navigation