Skip to main content
Log in

Is it Feasible to Use the Commercially Available Autoquantitation Software for the Evaluation of Myocardial Viability on Small-Animal Cardiac F-18 FDG PET Scan?

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the reliability of quantitation of myocardial viability on cardiac F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) scans with three different methods of visual scoring system, autoquantitation using commercially available autoquantitation software, and infarct-size measurement using histogram-based maximum pixel threshold identification on polar-map in rat hearts.

Methods

A myocardial infarct (MI) model was made by left anterior descending artery (LAD) ligation in rat hearts. Eighteen MI rats underwent cardiac FDG-PET-computed tomography (CT) twice within a 4-week interval. Myocardium was partitioned into 20 segments for the comparison, and then we quantitated non-viable myocardium on cardiac FDG PET-CT with three different methods: method A—infarct-size measurement using histogram-based maximum pixel threshold identification on polar-map; method B—summed MI score (SMS) by a four-point visual scoring system; method C—metabolic non-viable values by commercially available autoquantitation software. Changes of non-viable myocardium on serial PET-CT scans with three different methods were calculated by the change of each parameter. Correlation and reproducibility were evaluated between the different methods.

Results

Infarct-size measurement, visual SMS, and non-viable values by autoquantitation software presented proportional relationship to each other. All the parameters of methods A, B, and C showed relatively good correlation between each other. Among them, infarct-size measurement (method A) and autoquantitation software (method C) showed the best correlation (r = 0.87, p < 0.001). When we evaluated the changes of non-viable myocardium on the serial FDG-PET-CT- however, autoquantitation program showed less correlation with the other methods. Visual assessment (method B) and those of infarct size (method A) showed the best correlation (r = 0.54, p = 0.02) for the assessment of interval changes.

Conclusions

Commercially available quantitation software could be applied to measure the myocardial viability on small animal cardiac FDG-PET-CT scan. This kind of quantitation showed good correlation with infarct size measurement by histogram-based maximum pixel threshold identification. However, this method showed the weak correlation when applied in the measuring the changes of non-viable myocardium on the serial scans, which means that the caution will be needed to evaluate the changes on the serial monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iskander S, Iskandrian AE. Prognostic utility of myocardial viability assessment. Am J Cardiol. 1999;83:696–702.

    Article  PubMed  CAS  Google Scholar 

  2. Baer FM, Theissen P, Schneider CA, Eerhard V, Udo S, Harald S, et al. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol. 1998;31:1040–8.

    Article  PubMed  CAS  Google Scholar 

  3. Gibbons RJ, Miller TD, Christian TF. Infarct size measured by single photon emission computed tomographic imaging with 99mTc-sestamibi: a measure of the efficacy of therapy in acute myocardial infarction. Circulation. 2000;101:101–8.

    Article  PubMed  CAS  Google Scholar 

  4. Abraham A, Nichol G, Williams KA. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial. J Nucl Med. 2010;51:567–74.

    Article  PubMed  Google Scholar 

  5. Marshall RC, Tillisch JH, Phelpls ME, Huang SC, Carson R, Henze E, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation. 1983;67:766–88.

    Article  PubMed  CAS  Google Scholar 

  6. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps ME, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron emission tomography. N Engl J Med. 1986;314:884–8.

    Article  PubMed  CAS  Google Scholar 

  7. Schwaiger M, Brunken R, Grover-McKay M, Krivokapich J, Child J, Tillisch J, et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol. 1986;8:800–8.

    Article  PubMed  CAS  Google Scholar 

  8. Brunken R, Tillisch J, Schwaiger M, Child J, Marshall R, Mandelkern M, et al. Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q-wave infarctions: evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation. 1986;73:951–63.

    Article  PubMed  CAS  Google Scholar 

  9. Juhani Knuuti M, Nuutila P, Ruotsalainen U, Teras M, Sarste M, Harkonen R, et al. Voipio-Pulkki. The value of quantitative analysis of glucose utilization in detection of myocardial viability by PET. J Nucl Med. 1993;34:2068–75.

    Google Scholar 

  10. Germano G, Paul BK, Daniel SB. An automatic approach to the analysis, quantitation and review of perfusion and function from myocardial perfusion SPECT images. Int J Cardiovasc Imaging. 1997;13:337–46.

    Article  CAS  Google Scholar 

  11. Paeng JC, Lee DS, Cheon GJ, Kim KB, Yeo JS, Chung JK, et al. Consideration of perfusion reserve in viability assessment by myocardial Tl-201 rest-redistribution SPECT: a quantitative study with dual-isotope SPECT. J Nucl Cardiol. 2002;9:68–74.

    Article  PubMed  Google Scholar 

  12. Faber TL, Cooke CD, Folks RD, Vansant JP, Nichols KJ, DePuey EG, et al. Left ventricular function and perfusion from gated perfusion images: an integrated method. J Nucl Med. 1999;40:650–9.

    PubMed  CAS  Google Scholar 

  13. Ezekiel A, Van Train K, Berman D, Silagan G, Maddahi J, Garcia EV. Automatic determination of quantitation parameters from Tc-Sestamibi myocardial tomograms. Computers in Cardiology 1991, Proceedings. NY: IEEE; p 237–240.

  14. Van Train K, Garcia EV, Maddahi J, Areeda J, Cooke CD, Kiat H, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med. 1994;35:609–18.

    PubMed  Google Scholar 

  15. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med. 1995;36:2138–47.

    PubMed  CAS  Google Scholar 

  16. Paeng JC, Lee DS, Cheon GJ, Lee MM, Chung JK, Lee MC. Reproducibility of an automatic quantitation of regional myocardial wall motion and systolic thickening in gated 99mTc-sestamibi myocardial SPECT. J Nucl Med. 2001;42:695–700.

    PubMed  CAS  Google Scholar 

  17. Lecomte R, Croteau E, Gauthier ME, Archambault M, Aliga A, Rousseau J, et al. Cardiac PET imaging of blood flow, metabolism, and function in normal and infarcted rats. IEEE Trans Nucl Sci. 2004;51:696–704.

    Article  Google Scholar 

  18. Kudo T, Fukuchi K, Annala AJ, Chatziioannou AF, Allada V, Dahlbom M, et al. Noninvasive measurement of myocardial activity concentrations and perfusion defect sizes in rats with a new small-animal positron emission tomogrgaph. Circulation. 2002;106:118–23.

    Article  PubMed  Google Scholar 

  19. Wu HM, Sui G, Lee CC, Prins ML, Ladno W, Lin HD, et al. In vivo quantitation of glucose metabolism in mice using small-animal PET and a microfluidic device. J Nucl Med. 2007;48:837–45.

    Article  PubMed  CAS  Google Scholar 

  20. Fang YD, Raymond Jr FM. Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies. J Nucl Med. 2008;49:606–14.

    Article  PubMed  Google Scholar 

  21. Thomas D, Bal H, Arkles J, Horowitz J, Araujo L, Acton PD, et al. Noninvasive assessment of myocardial viability in a small animal model: comparison of MRI, SPECT, and PET. Magn Reson Med. 2008;59:252–9.

    Article  PubMed  Google Scholar 

  22. Sherif HM, Saraste A, Weidl E, Weber AW, Higuchi T, Reder S, et al. Evaluation of a novel (18) F-labeled positron-emission tomography perfusion tracer for the assessment of myocardial infarct size in rats. Circ Cardiovasc Imaging. 2009;2:77–84.

    Article  PubMed  Google Scholar 

  23. Higuchi T, Nekolla SG, Jankaukas A, Weber AW, Huisman MC, Reder S, et al. Characterization of normal and infarcted rat myocardium using a combination of small-animal PET and clinical MRI. J Nucl Med. 2007;48:288–94.

    PubMed  Google Scholar 

  24. Woo SK, Lee YJ, Lee W, Kim MH, Park JA, Kim JS, et al. Quantitative assessment technology of small animal myocardial infarction PET image using Gaussian mixture model. Korean J Med Phys. 2011;22(1):42–51.

    Google Scholar 

  25. Girish V, Vijayalakshmi A. Affordable image analysis using NIH image/Image J. Indian J Cancer. 2004;41:47.

    PubMed  CAS  Google Scholar 

  26. Baer FM, Voth E, Deutsch HJ, et al. Predictive value of low dose dobutamine transesophageal echocardiography and fluorine-18 fluorodeoxyglucose positron emission tomography for recovery of regional left ventricular function after successful revascularization. J Am Coll Cardiol. 1996;28:60–9.

    Article  PubMed  CAS  Google Scholar 

  27. Kitsiou AN, Bacharach SL, Bartlett ML, et al. 13N-ammonia myocardial blood flow and uptake. Relation to functional outcome of asynergic regions after revascularization. J Am Coll Cardiol. 1999;33:678–86.

    Article  PubMed  CAS  Google Scholar 

  28. Bland J, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

    Article  PubMed  CAS  Google Scholar 

  29. Lin GS, Hines HH, Grant G, Taylor K, Ryals C. Automated quantification of myocardial ischemia and wall motion defects by use of cardiac spect polar mapping and 4-dimensional surface rendering. J Nucl Med Technol. 2006;34:3–17.

    PubMed  Google Scholar 

  30. Garcia EV, DePuey EG, Depasquale EE. Quantitative planar and tomographic thallium-201 myocardial perfusion imaging. Cardiovasc Intervent Radiol. 1987;10:374–83.

    Article  PubMed  CAS  Google Scholar 

  31. Benoit T, Vivegnis D, Foulon J, Rigo P. Quantitative evaluation of myocardial single-photon emission tomographic imaging: application to the measurement of perfusion defect size and severity. Eur J Nucl Med. 1996;23:1603–12.

    Article  PubMed  CAS  Google Scholar 

  32. Declerck J, Feldmar J, Goris ML, Betting F. Automatic registration and alignment on a template of cardiac stress and rest reoriented SPECT images. IEEE Trans Med Imaging. 1997;16:727–37.

    Article  PubMed  CAS  Google Scholar 

  33. Goris ML, Holtz B, Thirion JP, Similon P. Factors affecting and computation of myocardial perfusion reference images. Nucl Med Commun. 1999;20:627–35.

    Article  PubMed  CAS  Google Scholar 

  34. Kim JS, Lee JS, Lee JJ, Lee BI, Park MH, Lee HJ, et al. Effects of attenuation and scatter corrections in cat brain PET images using microPET R4 scanner. Nucl Med Mol Imaging. 2006;40:40–7.

    Google Scholar 

  35. Lee DS, Cheon GJ, Ahn JY, Chung JK, Lee MC. Reproducibility of assessment of myocardial function using gated 99mTc-MIBI SPECT and quantitative software. Nucl Med Commun. 2000;21:1127–34.

    Article  PubMed  CAS  Google Scholar 

  36. Itti E, Klein G, Rosso J, Evangelista E, Monin JL, Gueret P, et al. Assessment of myocardial reperfusion after myocardial infarction using 3-dimentional quantification and template matching. J Nucl Med. 2004;45:1981–8.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by Korea University Intramural Research Grants (2011-K1131781 and 2011-K1132941)

The authors have no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae Gol Choe or Gi Jeong Cheon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pahk, K., Oh, S.Y., Jeong, E. et al. Is it Feasible to Use the Commercially Available Autoquantitation Software for the Evaluation of Myocardial Viability on Small-Animal Cardiac F-18 FDG PET Scan?. Nucl Med Mol Imaging 47, 104–114 (2013). https://doi.org/10.1007/s13139-013-0206-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-013-0206-8

Keywords

Navigation