Skip to main content

Advertisement

Log in

The Economic and Energy Effects of Carbon Dioxide Emissions Trading in the International Market: New Challenge Conventional Measurement

  • Published:
Journal of the Knowledge Economy Aims and scope Submit manuscript

Abstract

Starting from the planned linkage of the European Union’s Emissions Trading System with a new system in Australia in 2015, this paper simulates the impacts of expanding this international emissions market to include China and the USA, which are respectively the largest and second largest carbon dioxide emitters in the world. The findings suggest that including China and the USA significantly impacts the price and the quantity of permits traded worldwide. When China joins the EU-Australia-New Zealand (EU-ANZ)-linked market, we find that the prevailing global carbon market price falls significantly, from $35/tCO2 to $11.4/tCO2. In contrast, adding the USA to the EU-ANZ market increases the price to $48/tCO2. If both China and the USA join the linked market, the market price of an emissions permit is $18.1/tCO2 and 610 million metric tons are traded, compared to 95 million metric tons in the EU-ANZ scenario. When permit trading between all countries is considered, relative to when all carbon markets operate in isolation, renewable energy in China expands by more than 22 % and shrinks by 50 and 95 % in the USA and ANZ, respectively. In all scenarios, global emissions are reduced by around 5 % relative to a case without climate policies. Such results may attract the attention of the policy makers as well as the stakeholders for future investment in energy and environmental technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Council for an Energy-Efficiency Economy. 2013. Energy Efficiency Resource Standards (EERS).

  • Armington, P. S. (1969). A theory of demand for products distinguished by place of production. IMF Staff Papers, 16, 159–76.

    Article  Google Scholar 

  • Australia Greenhouse Gas Reduction Scheme Administrator. (2012). The greenhouse gas reduction scheme.

  • Australian Government. (2012). Renewable energy target.

  • Babiker, M. J., Reilly, M., & Viguier, L. (2004). Is international emissions trading always beneficial? Energy Journal, 25(2), 33–56.

    Article  Google Scholar 

  • Badri, N., Angel, A., Robert, M. (2012). Global trade, assistance, and production: The GTAP 8 data base.

  • California Environmental Protection Agency Air Resources Board. (2012). Cap-and-trade program.

  • Department of Climate Change and Energy Efficiency. (2011). Securing a clean energy future the Australian government’s climate change plan. Act No. 2601. Canberra.

  • Environment News Service. (2013). Australia, China collaborate on Asia-Pacific carbon market. March 27.

  • European Union. (2003). Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 establishing a scheme for greenhouse gas emission allowance trading within the community and amending council directive 96/61/EC. Brussels: European Commission.

    Google Scholar 

  • European Union. (2012a). Emissions trading system (EU-ETS). Brussels: European Commission.

    Google Scholar 

  • European Union. (2012b). International carbon market. Brussels: European Commission.

    Google Scholar 

  • European Union. (2012c). The EU climate and energy package. Brussels: European Commission.

    Google Scholar 

  • European Union Commission. (2009). Towards a comprehensive climate change agreement in Copenhagen: Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions, (No 39/9). European Commission: Brussels.

    Google Scholar 

  • Flachsland, C., Marschinski, R., Edenhofer, O. (2009a). To link or not to link: benefits and disadvantages of linking cap-and-trade systems. Climate Policy, 9 (4).

  • Flachsland, C., Marschinski, R., & Edenhofer, O. (2009b). Global trading versus linking: architectures for international emissions trading. Energy Policy, 37(5), doi: 10.1016/j.enpol.2008.12.008.

  • Gavard, C., Winchester, N., Jacoby, H., & Paltsev, S. (2011). What to expect from sectoral trading: a US-China example. Climate Change Economics (CCE), 2(1), 9–26.

    Article  Google Scholar 

  • Guoyi, H., Marie, O., Karl, H., & David, L. (2012). China’s carbon emission trading: an overview of current development. Stockholm Environment Institute: Sweden.

    Google Scholar 

  • ICAP. (2007). International carbon action partnership political declaration. International Carbon Action Partnership, October 29.

  • International Energy Agency. (2011). CO2 emissions from fuel combustion 2011. Organization for economic cooperation and development.

  • IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. http://www.ipcc-nggip.iges.or.jp/public/2006gl/.

  • Lavelle, M. (2010). A U.S. cap-and-trade experiment to end. National Geographic Daily News, November 3.

  • Marschinski, R., Flachsland, C., & Jakob, M. (2012). Sectoral linking of carbon markets: a trade-theory analysis. Resource and Energy Economics, 34(4), 585–606.

    Article  Google Scholar 

  • McFarland, J. R., Reilly, J. M., & Herzog, H. J. (2004). Representing energy technologies in top-down economic models using bottom-up information. Energy Economics, 26, 685–707.

    Article  Google Scholar 

  • McKibbin, W. J., Morris, M., Wilcoxen, P. J. (2008). Expecting the unexpected: Macroeconomic volatility and climate policy, discussion paper 08-16, Harvard Kennedy School.

  • Morris, J., Reilly, J. M., Paltsev, S. (2010). Combining a renewable portfolio standard with a cap-and-trade policy: a general equilibrium analysis. MIT JPSPGC Report 187.

  • Narayanan, B. (2012). GTAP 8 data base documentation-chapter 3: what’s new in GTAP 8? Center for global trade analysis, GTAP Resource 3976.

  • Narayanan, B., Betina, D., Robert, M. (2012). GTAP 8 data base documentation-chapter 2: guide to the GTAP data base. Center for global trade analysis, GTAP Resource 3777.

  • National Energy Administration. (2012). Twelfth five-year plan for renewable energy development.

  • Nelson, T., Kelley, S., & Orton, F. (2012). A literature review of economic studies on carbon pricing and Australian wholesale electricity markets. Energy Policy, 49, 217–224.

    Article  Google Scholar 

  • Qi, T., Zhou, L., Zhang, X., & Ren, X. (2012). Regional economic output and employment impact of coal-to-liquids (CTL) industry in China: an input–output analysis. Energy, 46, 259–263.

    Article  Google Scholar 

  • RGGI. (2013). The regional greenhouse gas initiative: an initiative of the Northeast and Mid-Atlantic States of the U.S.

  • Rutherford, T. F. (2005). GTAP6inGAMS: the dataset and static mode, p. 42.

  • Rutherford, T. F., & Paltsev, S. V. (2000). GTAPinGAMS and GTAP-EG: global datasets for economic research and illustrative models, p. 64.

  • Waxman, H. A., & Markey, E. J. (2009). American clean energy and security act of 2009. 111th Congress, H. R. 2452.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moheddine Younsi.

Appendices

Appendix A

Fig. 7
figure 7

Simplified structure of a CGE model

Appendix B. Equations

Import Price

$$ P{M}_c=pw{m}_c\left(1+t{m}_c\right)EXR + {\displaystyle {\sum}_{c\prime \in CT}P{Q}_{c\prime }ic{m}_{c\prime\ c}} $$
(1)

where

c ∈ C :

a set of commodities (also referred to as c. and C.)

c ∈ CM(⊂C):

a set of imported commodities

c ∈ CT(⊂C):

a set of domestic trade inputs (distribution commodities)

PM c :

import price in LCU (local-currency units) including transaction costs

pwm c :

c.i.f. import price in FCU (foreign-currency units)

tm c :

import tariff rate

EXR :

exchange rate (LCU per FCU)

PW c :

composite commodity price (including sales tax and transaction costs)

icm c ' c :

quantity of commodity c. as trade input per imported unit of c.

Exporte Price

$$ P{E}_c=pw{e}_c\left(1-t{e}_c\right)EXR-{\displaystyle {\sum}_{c\prime \in CT}P{Q}_{c\prime }ic{e}_{c\prime\ c}} $$
(2)

where

c ∈ CM(⊂C):

a set of exported commodities (with domestic production)

PE c :

export price (LCU)

pwe c :

f.o.b. export price (FCU)

te c :

export tax rate

ice c ' c :

quantity of commodity c. as trade input per exported unit of c.

Demand Price of Domestic Non trated Goods

$$ PD{D}_c=PD{S}_c+{\displaystyle {\sum}_{c\prime \in CT}P{Q}_{c\prime }ic{d}_{c\prime\ c}} $$
(3)

where

c ∈ CM(⊂C):

a set of commodities with domestic sales of domestic output

PDD c :

demand price for commodity produced and sold domestically

PDS c :

supply price for commodity produced and sold domestically

icd c ' c :

quantity of commodity c. as trade input per unit of c produced and sold domestically

Absorption

$$ P{Q}_c=\left(1-t{q}_c\right)\ P{Q}_c=PD{D}_c\ Q{D}_c + P{M}_{c\ }Q{M}_c $$
(4)

where

QQ c :

quantity of goods supplied to domestic market (composite supply)

QD c :

quantity sold domestically of domestic output

QM c :

quantity of imports of commodity

tq c :

rate of sales tax (as share of composite price inclusive of sales tax)

Marketed Output Value

$$ P{X}_c\ Q{X}_c=PD{S}_c\ Q{D}_c + P{E}_{c\ }Q{E}_c $$
(5)

where

PX c :

aggregate producer price for commodity

QX c :

aggregate marketed quantity of domestic output of commodity

QE c :

quantity of exports

c ∈ CX(⊂C):

a set of commodities with domestic output

Activity Price

$$ P{A}_a={\displaystyle {\sum}_{c\in C}PXA{C}_{a\ c}{\theta}_{a\ c}} $$
(6)

where

a ∈ A :

a set of activities

PA a :

activity price (gross revenue per activity unit)

PXAC ac :

producer price of commodity c for activity a

θ a c :

yield of output c per unit of activity a

Aggregate Intermediate Input Price

$$ PINT{A}_a={\displaystyle {\sum}_{c\in C}P{Q}_cic{a}_{c\ a}} $$
(7)

where

PINTA α :

aggregate intermediate input price for activity a

ica c a :

quantity of c per unit of aggregate intermediate input a

Activity Revenue and Costs

$$ P{A}_a=\left(1-t{a}_a\right)\ Q{A}_a=PV{A}_a\ QV{A}_a + PINT{A}_a\ QINT{A}_a $$
(8)

where

ta a :

tax rate for activity

QA a :

quantity (level) of activity

QVA a :

quantity of (aggregate) value-added

QINTA a :

quantity of aggregate intermediate input

PVA a :

price of (aggregate) value-added

Consumer Price Index

$$ \overline{CPI} = {\displaystyle {\sum}_{c\in C}P{Q}_ccwt{s}_c} $$
(9)

where

cwts c :

weight of commodity c in the consumer price index

\( \overline{CPI} \) :

consumer price index (exogenous variable)

Producer Price Index for Nontrated Market Output

$$ DPI = {\displaystyle \sum_{c\in C}}PD{S}_cdwt{s}_c $$
(10)

where

dwts c :

weight of commodity c in the producer price index

DPI :

producer price index for domestically marketed output

CES Technology: Activity Production Function

$$ Q{A}_a={\alpha}_a^a{\left({\delta}_a^a\ QV{A}_a^{-{\rho}_a^a}+\left(1 - {\delta}_a^a\right)\ QINT{A}_a^{-{\rho}_a^a}\right)}^{\frac{1}{\rho_a^a}} $$
(11)

CES Technology: Value-Added-Intermediate-Input Ratio

$$ \frac{QV{A}_a}{QINT{A}_a}={\left(\frac{QINT{A}_a}{QV{A}_a}\ \frac{\delta_a^a\ }{1-{\delta}_a^a\ }\right)}^{\frac{1}{1+{\rho}_a^a}} $$
(12)

where

a ∈ ACES(⊂A):

a set of activities with a CES function at the top of the technology nest

α a a :

efficiency parameter in the CES activity function

δ a a :

CES activity function share parameter

ρ a a :

CES activity function exponent

Value-Added and Factor Demands

$$ QV{A}_a={\alpha}_a^{va}{\left({\displaystyle {\sum}_{f\in F}{\delta}_{f\ a}^{v\ a}\ Q{F}_{f\ a}^{-{\rho}_a^{v\ a}}}\right)}^{\frac{1}{\rho_a^{v\ a}}} $$
(13)

Factor demand

$$ \begin{array}{l}W{F}_{f\ }{\overline{WFDIST}}_{f\ a}=\\ {}PV{A}_a\ \left(1-tv{a}_a\right) = QV{A}_a{\left({\displaystyle \sum_{f\in F}}{\delta}_{f\ a}^{v\ a}\ Q{F}_{f\ a}^{-{\rho}_a^{v\ a}}\right)}^{-1}\ {\delta}_{f\ a}^{v\ a}\ Q{F}_{f\ a}^{-{\rho}_a^{v\ a-1}}\end{array} $$
(14)

where

f ∈ F(=F ′):

a set of factors

tva α :

rate of value-added tax for activity a

α a a :

efficiency parameter in the CES value-added function

δ v a f a :

CES value-added function share parameter for factor f in activity a

QF fa :

quantity demanded of factor f from activity a

ρ v a a :

CES value-added function exponent

WF f :

average price of factor

\( {\overline{WFDIST}}_{fa} \) :

wage distortion factor for factor f in activity a (exogenous variable)

Disaggregated Intermediate Input Demand

$$ QIN{T}_{c\ a}=ic{a}_{c\ a}\ QINT{A}_a $$
(15)

where

QINT c a :

quantity of commodity c as intermediate input to activity a

Commodity Production and Allocation

$$ QXA{C}_{a\ c}+{\displaystyle {\sum}_{h\in H}QH{A}_{a\ c\ h}=}{\theta}_{a\ c}\ Q{A}_a $$
(16)

where

QXAC a c :

marketed output quantity of commodity c from activity a

QHA a c h :

quantity of household home consumption of commodity c from activity a for household h

Output Aggregation Function

$$ Q{X}_c={\alpha}_c^{ac}{\left({\displaystyle {\sum}_{a\in A}{\delta}_{ac}^{ac}\ QXA{C}_{ac}^{-{\rho}_c^{ac}}}\right)}^{-\frac{1}{\rho_c^{ca}-1}} $$
(17)

where

α ac c :

shift parameter for domestic commodity aggregation function

δ ac ac :

share parameter for domestic commodity aggregation function

ρ ca c :

domestic commodity aggregation function exponent

First-Order Condition for Output Aggregation Function

$$ PXA{C}_{a\ c}=P{X}_c\ Q{X}_c{\left({\displaystyle {\sum}_{a\in A\prime }{\delta}_{a\ c}^{ac}\ QXA{C}_{a\ c}^{-{\rho}_c^{ac}}}\right)}^{-1}\ {\delta}_{a\ c}^{ac}\ QXA{C}_{a\ c}^{-{\rho}_c^{ac}-1} $$
(18)

Output Transformation (CET) Function

$$ Q{X}_c={\alpha}_c^t{\left({\displaystyle {\sum}_{a\in A}{\delta}_c^t\ Q{E}_c^{\rho_c^t} + \left(1-{\delta}_c^t\right)\ Q{E}_c^{\rho_c^t}}\right)}^{\frac{1}{\rho_c^t}} $$
(19)

where

α t c :

a CET function shift parameter

δ t c :

a CET function share parameter

ρ t c :

a CET function exponent

Export-Domestic Supply Ratio

$$ \frac{Q{E}_c}{Q{D}_c}={\left(\frac{P{E}_c}{PD{S}_c}\ \frac{1-{\delta}_c^t\ }{\delta_c^t\ }\right)}^{\frac{1}{\rho_{c-1}^t}} $$
(20)

Import-Domestic Demand Ratio

$$ \frac{Q{M}_c}{Q{D}_c}={\left(\frac{PD{D}_c}{P{M}_c}\ \frac{\delta_c^q\ }{1-{\delta}_c^q\ }\right)}^{\frac{1}{1+{\rho}_c^q}} $$
(21)

Demand for Transactions Services

$$ Q{T}_c={\displaystyle {\sum}_{c\prime \in C\prime }{\displaystyle \sum \left(ic{m}_{c\ c\prime\ }Q{M}_{c\prime } + ic{e}_{c\ c\prime\ }Q{E}_{c\ c\prime } + ic{d}_{c\ c\prime\ }Q{D}_{c\prime\ }\right.}} $$
(22)

where

QT c :

quantity of commodity demanded as transactions service input

Household Consumption Spending on Marketed Commodities

$$ P{Q}_c\ Q{H}_{c\ h}=P{Q}_c\ {\gamma}_{c\ h}^m+{\beta}_{c\ h}^m\left(E{H}_h-{\displaystyle \sum_{c\hbox{'}\in C}}P{Q}_c{\gamma}_{c\hbox{'}\ h}^m\ {\displaystyle \sum_{a\in A}}{\displaystyle \sum_{c\hbox{'}\in C}}\ PXA{C}_{a\ c\hbox{'}}{\gamma}_{a\ c\hbox{'}\ h}^h\right. $$
(23)

where

QH c h :

quantity of consumption of marketed commodity c for household h

γ m c h :

subsistence consumption of marketed commodity c for household h

γ h a c ' h :

subsistence consumption of home commodity c from activity a for household h

β m c h :

marginal share of consumption spending on marketed commodity c for household h

Factor Markets

$$ {\displaystyle {\sum}_{a\in A}Q{F}_{f\ a}=}{\overline{QFS}}_f $$
(24)

where

\( {\overline{QFS}}_f \) :

quantity supplied of factor (exogenous variable)

Composite Commodity Markets

$$ Q{Q}_c={\displaystyle \sum_{a\in A}}QIN{T}_{c\ a} + {\displaystyle \sum_{a\in A}}Q{H}_{c\ h} + Q{G}_c+QIN{V}_c+qds{t}_c+Q{T}_c $$
(25)

where

qdst c :

quantity of stock change

Direct institutional Tax Rates

$$ TIN{S}_i={\overline{tins}}_i\ \left(1+\overline{TINSADJ}\ tin s{01}_i\right)+{\overline{DTINS}}_i\ tin{s}_i $$
(26)

where

TINS  i :

rate of direct tax on domestic institutions i

\( {\overline{tins}}_i \) :

exogenous direct tax rate for domestic institution i

\( \overline{TINSADJ} \) :

direct tax scaling factor (=0 for base; exogenous variable)

tins01 i :

0.1 parameter with 1 for institutions with potentially flexed direct tax rates

\( {\overline{DTINS}}_i \) :

change in domestic institution tax share (=0 for base, exogenous variable)

Institutional Savings Rates

$$ MP{S}_i={\overline{mps}}_i\ \left(1+\overline{MPSADJ}\ mps{01}_i\right)+ DMPS\ mps{01}_i $$
(27)

where

\( {\overline{mps}}_i \) :

base savings rate for domestic institution i

\( \overline{MPSADJ} \) :

savings rate scaling factor (=0 for base)

mps01 i :

0–1 parameter with 1 for institutions with potentially flexed direct tax rates

DMPS :

change in domestic institution savings rates (=0 for base, exogenous variable)

Total Absorption

$$ TABS={\displaystyle {\sum}_{h\in H}{\displaystyle {\sum}_{c\in C}P{Q}_{c\kern0.5em }Q{H}_c\kern0.5em +{\displaystyle {\sum}_{a\in A}{\displaystyle {\sum}_{c\in C}{\displaystyle {\sum}_{h\in H}PXA{C}_{a\ c\kern0.5em }QH{A}_{a\ c\ h} + }{\displaystyle {\sum}_{c\in C}P{Q}_{c\kern0.5em }Q{G}_c + }}{\displaystyle {\sum}_{c\in C}P{Q}_{c\kern0.5em }QIN{V}_c\kern0.5em +}}}{\displaystyle {\sum}_{c\in C}P{Q}_{c\kern0.5em }qds{t}_c}} $$
(28)

where

TABS :

total nominal absorption

Ratio of Investment to Absorption

$$ INVSHR. TABS={\displaystyle {\sum}_{c\in C}P{Q}_{c\kern0.5em }QIN{V}_c\kern0.5em +}{\displaystyle {\sum}_{c\in C}P{Q}_{c\kern0.5em }qds{t}_c} $$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younsi, M., Hassine, A.B.H. & Ncir, M. The Economic and Energy Effects of Carbon Dioxide Emissions Trading in the International Market: New Challenge Conventional Measurement. J Knowl Econ 8, 565–584 (2017). https://doi.org/10.1007/s13132-015-0264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13132-015-0264-5

Keywords

Navigation