Skip to main content
Log in

Assessment by microsatellite analysis of genetic diversity and population structure of Enhalus acoroides from the coast of Khanh Hoa Province, Vietnam

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Seagrass beds degraded significantly since the last century on both, global and local scale. The seagrass species Enhalus acoroides (Linnaeus f.) Royle is a common species found in almost all marine ecosystems including bays, lagoons and around offshore islands in tropical regions of the West Pacific. It was shown that genetic diversity is an essential indicator of the conditions of ecosystems. In the present study, microsatellite markers were used to assess the genetic diversity and population structure of six distinct seagrass beds along the coast of the Khanh Hoa Province, Vietnam. The results indicate that the genetic diversity of the populations in the open sea is higher than in the lagoon. Seagrass beds occurring in disturbed sites show reduced genetic diversity. The fixing index value (FST) depicts a relatively high genetic structure among populations. Structure analysis clusters the populations into open sea and lagoon populations and cluster analysis and AMOVA indicate a significant difference between the two groups. There are low but non-significant positive correlations between geographic and genetic distances. The different habitats of the open sea and the lagoon are probably responsible for forming two groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alberte R S, Suba G K, Procaccini G, et al. 1994. Assessment of genetic diversity of seagrass populations using DNA fingerprinting: implications for population stability and management. Proc Natl Acad Sci USA, 91(3): 1049–1053, doi: 10.1073/pnas.91.3.1049

    Article  Google Scholar 

  • Arnaud–Haond S, Belkhir K. 2007. GenClone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes, 7(1): 15–17

    Article  Google Scholar 

  • Arriesgado D M, Kurokochi H, Nakajima Y, et al. 2015. Genetic diversity and structure of the tropical seagrass Cymodocea serrulata spanning its central diversity hotspot and range edge. Aquat Ecol, 49(3): 357–372, doi: 10.1007/s10452–015–9529–0

    Article  Google Scholar 

  • Arriesgado D M, Kurokochi H, Nakajima Y, et al. 2016. Population genetic diversity and structure of a dominant tropical seagrass, Cymodocea rotundata, in the western Pacific region. Mar Ecol, 37(4): 786–800, doi: 10.1111/maec.12350

    Article  Google Scholar 

  • Carja O, Liberman U, Feldman M W. 2014. Evolution in changing environments: modifiers of mutation, recombination, and migration. Proc Natl Acad Sci USA, 111(50): 17935–17940, doi: 10.1073/pnas.1417664111

    Article  Google Scholar 

  • Chen C F, Lau V K, Chang N B, et al. 2016. Multi–temporal change detection of seagrass beds using integrated Landsat TM/ETM +/OLI imageries in Cam Ranh Bay, Vietnam. Ecol Inform, 35: 43–54, doi: 10.1016/j.ecoinf.2016.07.005

    Article  Google Scholar 

  • Dai N H, Tri P H, Hoa N X, et al. 1998. Seagrass beds in the south of Viet Nam. Proc 4th Nat Conf Mar Sci Tech (in Vietnamese), 2(1): 967–972

    Google Scholar 

  • Deng J C, Liao B, Ye M, et al. 2007. The effects of heavy metal pollution on genetic diversity in zinc/cadmium hyperaccumulator Sedum alfredii populations. Plant Soil, 297(1–2): 83–92, doi: 10.1007/s11104–007–9322–5

    Google Scholar 

  • Dorken M E, Eckert C G. 2001. Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol, 89(3): 339–350, doi: 10.1046/j.1365–2745.2001.00558.x

    Article  Google Scholar 

  • Dung T T T, Cappuyns V, Swennen R, et al. 2014. Leachability of arsenic and heavy metals from blasted copper slag and contamination of marine sediment and soil in Ninh Hoa district, south central of Vietnam. Appl Geochem, 44: 80–92, doi: 10.1016/j.apgeochem. 2013.07.021

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 14(8): 2611–2620, doi: 10.1111/mec. 2005.14.issue–8

    Article  Google Scholar 

  • Excoffier L, Lischer H E L. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour, 10(3): 564–567, doi: 10.1111/men. 2010.10.issue–3

    Article  Google Scholar 

  • Excoffier L, Smouse P E, Quattro J M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131(2): 479–491

    Google Scholar 

  • Frankham R. 2005. Genetics and extinction. Biol Cons, 126(2): 131–140, doi: 10.1016/j.biocon.2005.05.002

    Article  Google Scholar 

  • Gacia E, Duarte C M, Marbà N, et al. 2003. Sediment deposition and production in SE–Asia seagrass meadows. Estuar Coast Shelf Sci, 56(5–6): 909–919, doi: 10.1016/S0272–7714(02)00286–X

    Article  Google Scholar 

  • Goudet J. 1995. FSTAT (Version 1.2): a computer program to calculate f–statistics. J Hered, 86(6): 485–486, doi: 10.1093/oxfordjournals.jhered.a111627

    Article  Google Scholar 

  • Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (Version 2.9.3). Switzerland: University of Bern. https://www2.unil.ch/popgen/softwares/fstat.htm [2005-08-23/2017-08-06].

    Google Scholar 

  • Guo S W, Thompson E A. 1992. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics, 48(2): 361–372, doi: 10.2307/2532296

    Article  Google Scholar 

  • Hernawan U E, van Dijk K, Kendrick G A, et al. 2017. Historical processes and contemporary ocean currents drive genetic structure in the seagrass Thalassia hemprichii in the Indo–Australian Archipelago. Mol Ecol, 26(4): 1008–1021, doi: 10.1111/mec. 2017.26.issue–4

    Article  Google Scholar 

  • Horgarth P J. 2015. The Biology of Mangroves and Seagrasses. 2nd ed. London: Oxford University Press, 304

    Book  Google Scholar 

  • Hughes A R, Stachowicz J J. 2011. Seagrass genotypic diversity increases disturbance response via complementarity and dominance. J Ecol, 99(2): 445–453

    Google Scholar 

  • Jahnke M, Olsen J L, Procaccini G. 2015. A meta–analysis reveals a positive correlation between genetic diversity metrics and environmental status in the long–lived seagrass Posidonia oceanica. Mol Ecol, 24(10): 2336–2348, doi: 10.1111/mec.13174

    Article  Google Scholar 

  • Jiang Kai, Xu Nana, Tsang P K E, et al. 2014. Genetic variation in populations of the threatened seagrass Halophila beccarii (Hydrocharitaceae). Biochem Syst Ecol, 53: 29–35, doi: 10.1016/j.bse. 2013.12.004

    Article  Google Scholar 

  • Kim J H, Kang J H, Jang J E, et al. 2017. Population genetic structure of eelgrass (Zostera marina) on the Korean coast: Current status and conservation implications for future management. PLoS One, 12(3): e0174105, doi: 10.1371/journal.pone.0174105

    Article  Google Scholar 

  • Lacap C D A, Vermaat J E, Rollon R N, et al. 2002. Propagule dispersal of the SE Asian seagrasses Enhalus acoroides and Thalassia hemprichii. Mar Ecol Prog Ser, 235: 75–80, doi: 10.3354/meps235075

    Article  Google Scholar 

  • Lacy R C. 1997. Importance of genetic variation to the viability of mammalian populations. J Mammal, 78(2): 320–335, doi: 10.2307/1382885

    Article  Google Scholar 

  • Le T V, Le L H. 2009. Improving environmental quality for Panulirus ornatus lobster aquaculture in Van Phong Bay, Vietnam, by combined culture with Perna viridis mussels. ACIAR Proceedings Series, 132: 59–71

    Google Scholar 

  • Lira–Medeiros C, Cardoso M A, Fernandes R A, et al. 2015. Analysis of genetic diversity of two mangrove species with morphological alterations in a natural environment. Diversity, 7(2): 105–117, doi: 10.3390/d7020105

    Article  Google Scholar 

  • Lucas C, Thangaradjou T, Papenbrock J. 2012. Development of a DNA barcoding system for seagrasses: Successful but not simple. PLoS One, 7(1): e29987, doi: 10.1371/journal.pone.0029987

    Article  Google Scholar 

  • Lönn M, Lundqvist A C, Andersson S. 2008. Genetic variation in wild plants and animals in Sweden: A review of case studies from the perspective of conservation genetics. Report 5786. Stockholm: Swedish Environmental Protection Agency

    Google Scholar 

  • Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res, 27(2): 209–220

    Google Scholar 

  • Miller M P. 1997. Tools for Population Genetic Analysis (TFPGA) Version 1.3: A Window® Program for the Analysis of Allozyme and Molecular Genetic Data. Flagstaff: Department of Biological Sciences, Northern Arizona University

    Google Scholar 

  • Milot E, Weimerskirch H, Duchesne P, et al. 2007. Surviving with low genetic diversity: The case of albatrosses. Proc Biol Sci B: Biol Sci, 274(1611): 779–787, doi: 10.1098/rspb.2006.0221

    Article  Google Scholar 

  • Nakajima Y, Matsuki Y, Lian C L, et al. 2012. Development of novel microsatellite markers in a tropical seagrass, Enhalus acoroides. Conserv Genet Resour, 4(2): 515–517, doi: 10.1007/s12686–012–9614–9

    Article  Google Scholar 

  • Nakajima Y, Matsuki Y, Lian C L, et al. 2014. The Kuroshio current influences genetic diversity and population genetic structure of a tropical seagrass, Enhalus acoroides. Mol Ecol, 23(24): 6029–6044, doi: 10.1111/mec.12996

    Article  Google Scholar 

  • Nguyen X V, Detcharoen M, Tuntiprapas P, et al. 2014. Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean. BMC Evol Biol, 14: 92, doi: 10.1186/1471–2148–14–92

    Article  Google Scholar 

  • Nguyen X V, Le–Ho K H, Papenbrock J. 2017a. Phytochelatin 2 accumulates in roots of the seagrass Enhalus acoroides collected from sediment highly contaminated with lead. BioMetals, 30(2): 249–260, doi: 10.1007/s10534–017–9998–9

    Article  Google Scholar 

  • Nguyen X V, Thirunavukarassu T, Papenbrock J. 2013. Genetic variation among Halophila ovalis (Hydrocharitaceae) and closely related seagrass species from the coast of Tamil Nadu, India–An AFLP fingerprint approach. Syst Biodiver, 11(4): 467–476, doi: 10.1080/14772000.2013.838317

    Article  Google Scholar 

  • Nguyen X V, Tran M H, Le T D, et al. 2017b. An assessement of heavy metal contamination on the surface sediment of seagrass beds at the Khanh Hoa coast, Vietnam. Bull Environ Contam Toxicol, 99(6): 728–734, doi: 10.1007/s00128–017–2191–6

    Article  Google Scholar 

  • Nguyen X V, Tran M H, Papenbrock J. 2017c. Different organs of Enhalus acoroides (Hydrocharitaceae) can serve as specific bioindicators for the sediment contaminated with different heavy metals. S Afr J Bot, 113: 389–395, doi: 10.1016/j.sajb.2017.09.018

    Article  Google Scholar 

  • Papenbrock J. 2012. Highlights in seagrasses’ phylogeny, physiology, and metabolism: What makes them special? ISRN Bot, 103892

    Google Scholar 

  • Peakall R, Smouse P E. 2012. GenAlEx 6.5: Genetic analysis in Excel: Population genetic software for teaching and research—an update. Bioinformatics, 28(19): 2537–2539, doi: 10.1093/bioinformatics/bts460

    Article  Google Scholar 

  • Peakall R O D, Smouse P E. 2006. GenAlEx 6: Genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes, 6(1): 288–295

    Google Scholar 

  • Pham H T, Nguyen H D, Nguyen X H, et al. 2006. Study on the variation of seagrass population in coastal waters of Khanh Hoa province, Vietnam. Coast Mar Sci, 30(1): 167–173

    Google Scholar 

  • Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2): 945–959

    Google Scholar 

  • Quang N H, Sasaki J, Higa H, et al. 2017. Spatiotemporal variation of turbidity based on Landsat 8 OLI in Cam Ranh Bay and Thuy Trieu Lagoon, Vietnam. Water, 9(8): 570, doi: 10.3390/w9080570

    Article  Google Scholar 

  • Rosenberg N A, Burke T, Elo K, et al. 2001. Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics, 159(2): 699–713

    Google Scholar 

  • Sherman C D H, York P H, Smith T M, et al. 2016. Fine scale patterns of genetic variation in a widespread clonal seagrass species. Mar Biol, 163: 82, doi: 10.1007/s00227–016–2861–7

    Article  Google Scholar 

  • Short F T, Wyllie–Echeverria S. 1996. Natural and human–induced disturbance of seagrasses. Environ Conserv, 23(1): 17–27, doi: 10.1017/S0376892900038212

    Article  Google Scholar 

  • Sinclair E A, Krauss S L, Anthony J, et al. 2014. The interaction of environment and genetic diversity within meadows of the seagrass Posidonia australis (Posidoniaceae). Mar Ecol Prog Ser, 506: 87–98, doi: 10.3354/meps10812

    Article  Google Scholar 

  • Ungherese G, Mengoni A, Somigli S, et al. 2010. Relationship between heavy metals pollution and genetic diversity in Mediterranean populations of the sandhopper Talitrus saltator (Montagu) (Crustacea, Amphipoda). Environ Pollut, 158(5): 1638–1643, doi: 10.1016/j.envpol.2009.12.007

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson W F, Wills D P M, et al. 2004. Microchecker: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes, 4(3): 535–538, doi: 10.1111/men.2004.4.issue–3

    Article  Google Scholar 

  • Wang X Y, Shen D W, Jiao J, et al. 2012. Genotypic diversity enhances invasive ability of Spartina alterniflora. Mol Ecol, 21(10): 2542–2551, doi: 10.1111/j.1365–294X.2012.05531.x

    Article  Google Scholar 

  • Waycott M, Duarte C M, Carruthers T J B, et al. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA, 106(30): 12377–12381, doi: 10.1073/pnas. 0905620106

    Article  Google Scholar 

  • Weir B S, Cockerham C C. 1984. Estimating F–statistics for the analysis of population structure. Evolution, 38(6): 1358–1370

    Google Scholar 

  • Williams S L, Orth R J. 1998. Genetic diversity and structure of natural and transplanted eelgrass populations in the Chesapeake and Chincoteague Bays. Estuaries, 21(1): 118–128, doi: 10.2307/1352551

    Article  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the staff of the Institute of Oceanography, Vietnam, and the Institute of Botany, Leibniz University Hannover, Germany, for providing the necessary facilities to carry out this work. We are deeply indebted to T Debener and M Linde for giving technical advices and access to equipment for the analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-Vy Nguyen.

Additional information

Foundation item: The NAFOSTED under contract No. 106-NN.02-2014.04; the Umbrella of JSPS Core-to-core Program, B. Asia-Africa Science Platforms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, XV., Jutta, P. Assessment by microsatellite analysis of genetic diversity and population structure of Enhalus acoroides from the coast of Khanh Hoa Province, Vietnam. Acta Oceanol. Sin. 38, 144–150 (2019). https://doi.org/10.1007/s13131-019-1381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-019-1381-y

Key words

Navigation