Skip to main content
Log in

Interannual variations of the air-sea carbon dioxide exchange in the different regions of the Pacific Ocean

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Interannual variations of the air-sea CO2 exchange from1965 to 2000 in the Pacific Ocean are studied with a Pacific Ocean model. Two numerical experiments are performed, including the control run that is forced by climatological monthly mean physical data and the climate-change run that is forced by interannually varying monthly mean physical data. Climatological monthly winds are used in both runs to calculate the coefficient of air-sea CO2 exchange. The analysis through the differences between the two runs shows that in the tropical Pacific the variation of export production induced by interannual variations of the physical fields is negatively correlated with that of the air-sea CO2 flux, while there is no correlation or a weak positive correlation in the subtropical North and South Pacific. It indicates that the variation of the physical fields can modulate the variation of the air-sea CO2 flux in converse ways in the tropical Pacific by changing the direct transport and biochemical process. Under the interannually varying monthly mean forcing, the simulated EOF1 of the air-sea CO2 flux is basically consistent with that of sea surface temperature (SST) in the tropical Pacific, but contrary in the two subtropical Pacific Ocean. The correlation coefficient between the regionally integrated air-sea CO2 flux and area-mean SST shows that when the air-sea CO2 flux lags SST by about 5 months, the positive coefficient in the three regions is largest, indicating that in the tropical Pacific or on the longer time scale in the three regions, physical processes control the flux-SST relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson L, Sarmiento J. 1995. Global ocean phosphate and oxygen simulations. Global Biogeochemical Cycles, 9: 621–631

    Article  Google Scholar 

  • Chavez F P, Strutton P G, Feely G E. 1999. Biological and chemical response of the equatorial Pacific Ocean to climatic forcing during the 1997–1998 El Niño. Science, 286(5447): 2126–2131

    Article  Google Scholar 

  • Dandonneau Y. 1995. Sea-surface partial pressure of carbon dioxide in the eastern equatorial Pacific (August 1991 to October 1992): a multivariate analysis of physical and biological factors. Deep-Sea Res: II, 42: 349–364

    Article  Google Scholar 

  • Denman K L, Brasseur G, Chidthaisong A, et al. 2007. Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, et al., eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernment Panel on Climate Change. New York: Cambridge Univ Press, 499–588

    Google Scholar 

  • Doney S C, Lima I R, Feely A, et al. 2009. Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes: physical climate and atmospheric dust. Deep-Sea Res: II, 56: 640–655

    Article  Google Scholar 

  • Enting I G, Wigley TML, Heiman M. 1994. Future Emissions and Concentration of Carbon Dioxide: Key Ocean/Atmosphere/Land Analysis. CSIRO Division of Atmospheric Research Technical Paper No. 31. CSIRO, Australia

    Google Scholar 

  • Esbensen S K, Kushnir Y. 1981. The heat budget of the global ocean: An atlas based on estimates from surface marine observations. Rep. 29, climate Res Inst, Corvallis: Oregon State Univ, 244

    Google Scholar 

  • Feely R A, Boutin J, Cosca C E, et al. 2002. Seasonal and interannual variability of CO2 in the equatorial Pacific. Deep-Sea Res: II, 49: 2443–2469

    Article  Google Scholar 

  • Feely R A, Takahashi T, Wanninkhof R, et al. 2006. Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean. J Geophy Res, 111: C08590, doi:10.1029/2005JC003129

    Article  Google Scholar 

  • Feely R A, Wanninkhof R, Takahashi T, et al. 1999. Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation. Nature, 398: 597–601

    Article  Google Scholar 

  • Gent P R, McWilliams J C. 1990. Isopycnal mixing in ocean circulation models. J Phys Oceanogr, 20: 150–155

    Article  Google Scholar 

  • Gent P R, Willebrand J, McDougall T J. 1995. Parameterizing eddy-indued tracer transports in ocean circulation models. J Phys Oceanogr, 25: 463–474

    Article  Google Scholar 

  • Gu Dejun, Wang Dongxiao, Li Chunhui, et al. 2004. Analysis of interdecadal variation of tropical Pacific thermocline based on assimilated data. Acta Oceanologica Sinica, 23(1): 61–67

    Google Scholar 

  • Keeling C D, Bacastow R B, Carter A F, et al. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: I. Analysis of observational data. In: Peterson D H, ed. Aspects of Climate Variability in the Pacific and the Western Americas. Geophysical Monograph, 55: 165–235

  • Keeling C D, Whorf T P, Wahlen M, et al. 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 375: 666–670

    Article  Google Scholar 

  • Le Quéré C, Bopp L, Tegen I. 2002. Antarctic circumpolar wave impact on marine biology: a natural laboratory for climate change study. Geophys Res Lett, 29(10): 1407, doi:10.1029/2001GL14585

    Article  Google Scholar 

  • Le Quéré C, Orr J C, Monfray P, et al. 2000. Interannual variability of the oceanic sink of CO2 from 1979 through 1997. Global Biogeochemical Cycles, 14(4): 1247–1265

    Article  Google Scholar 

  • Li Yangchun, Xu Yongfu. 2012. Uptake and storage of anthropogenic CO2 in the Pacific Ocean estimated using two modelling approaches. Adv Atmos Sci, 29(4): 795–809, doi: 10.1007/s00376-012-1170-4

    Article  Google Scholar 

  • Liu Hailong, Zhang Xuehong, Li Wei, et al. 2004. An eddy-permitting oceanic general circulation model and its preliminary evaluation. Adv Atmos Sci, 21: 675–690

    Article  Google Scholar 

  • McGillis W R, Edson J B, Zappa C J, et al. 2004. Air-sea CO2 exchange in the equatorial Pacific. J Geophys Res, 109: C08S02, doi:10.1029/2003JC002256

    Article  Google Scholar 

  • McKinley G A, Michael J F, Marshall J. 2004. Mechanisms of airsea CO2 flux variability in the equatorial Pacific and the North Atlantic. Global Biogeochemical Cycles, 18: GB2011, doi:10.1029/2003GB002179

    Article  Google Scholar 

  • McKinley G A, Takahashi T, Buitenhuis E, et al. 2006. North Pacific carbon cycle response to climate variability on seasonal to decadal timescales. J Geophys Res, 111: C07S06, doi:10.1029/2005JC003173

    Article  Google Scholar 

  • Najjar R G, Jin X, Louanchi F, et al. 2007. Impact of circulation on export production, dissolved organicmatter and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Global Biogeochem Cycles, 21: GB3007, doi:10.1029/2006GB002857

    Article  Google Scholar 

  • Najjar R G, Sarmiento J L, Toggweiler J R. 1992. Downward transport and fate of organicmatter in the ocean: simulations with a general circulation model. Global Biogeochem Cycles, 6: 45–76

    Article  Google Scholar 

  • Obata A, Kitamura Y. 2003. Interannual variability of sea-air exchange of CO2 from 1961 to 1998 with a global ocean circulation biogeochemistry model. J Geophys Res, 108(C11): doi:10.1029/2001JC001088

  • Patra P K, Maksyutov S, Ishizawa M, et al. 2005. Interannual and decadal changes in the sea-air CO2 flux from atmospheric CO2 inverse modeling. Global Biogeochem Cycles, 19: GB4013, doi:10.1029/2004GB002257

    Article  Google Scholar 

  • Rodgers K B, Aumont O, Menkes C, et al. 2008. Decadal variations in equatorial Pacific ecosystems and ferrocline/pycnocline decouping. Global Biogeochem Cycles, 19: GB2019, doi:10.1029/2006GB002919

    Article  Google Scholar 

  • Roeske F. 2001. An atlas of surface flues based on the ECMWF reanalysis-a climatological dataset to force global ocean general circulation models. Report No 323. Hamburg: Max-Planck-Institut für Meteorologie, 1–31

    Google Scholar 

  • Sabine C L, Feely R A, Millero F J, et al. 2008. Decadal changes in Pacific carbon. J Geophys Res, 113: doi:10.1029/2007JC004577

  • Sun Fengying, Scoy K V, Huang Boyin, et al. 2004. Water exchange between the subpolar and subtropical North Pacific Ocean in an OGCM. Science in China: Ser D, 47(1): 37–48

    Article  Google Scholar 

  • Sverdrup H U. 1947. Wind-driven currents in a baroclinic ocean, with application to the equatorial currents of the eastern Pacific. Proc Natl Acad Sci USA, 33: 318–326

    Article  Google Scholar 

  • Takahashi T, Sutherland S C, Feely R A, et al. 2003. Decadal variation of the surface water \( p_{CO_2 } \) in the western and central equatorial Pacific. Science, 302: 852–856, doi:10.1126/science.1088570

    Article  Google Scholar 

  • Takahashi T, Sutherland S C, Sweeney C, et al. 2002. Global sea-air CO2 flux based on climatological surface ocean \( p_{CO_2 } \), and seasonal biological and temperature effects. Deep-Sea Res: II, 49:1601–1622

    Article  Google Scholar 

  • Takahashi T, Sutherland S C, Wanninkhof R, et al. 2009. Climatological mean and decadal change in surface ocean \( p_{CO_2 } \), and net sea-air CO2 flux over the global oceans. Deep-Sea Res: II, 56:554–577

    Article  Google Scholar 

  • Wang Dongxiao, Liu Zhengyu. 2000. The pathway of the interdecadal variability in the Pacific Ocean. Chinese Science Bulletin, 45(17): 1555–1561

    Article  Google Scholar 

  • Wang Dongxiao, Wang Jia, Wu Lixin, et al. 2003. Regime shifts in the North Pacific simulated by a COADS-driven isopycnal model. Advances in the Atmospheric Sciences, 20(5): 743–754

    Article  Google Scholar 

  • Wang Xiujun, Christian J R, Murtugudde R, et al. 2006. Spatial and temporal variability of the surface water \( p_{CO_2 } \) and air-sea CO2 flux in the equatorial Pacific during 1980–2003: a basin-scale cycle model. J Geophys Res, 111: C07S04, doi:10.1029/2005JC002972

    Article  Google Scholar 

  • Wetzel P, Winguth A, Maier-Reimer E. 2005. Sea-to-air CO2 flux from 1948 to 2003: a model study. Global Biogeochemical Cycles, 19: GB2005, doi:10.1029/2004GB002339

    Article  Google Scholar 

  • Wong C S, Waser N A D, Nojiri Y, et al. 2002. Seasonal and interannual variability in the distribution of surface nutrients and dissolved inorganic carbon in the northern North Pacific: Influence of El Niño. Journal of Oceanography, 58: 227–245

    Article  Google Scholar 

  • Yamanaka Y, Tajika E. 1996. The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: studies using an ocean biogeochemical general circulation model. Global Biogeochemical Cycles, 10: 361–382

    Article  Google Scholar 

  • Yuan Dongliang, Liu Hailong. 2009. Long-wave dynamics of sea level variations during Indian Ocean Dipole events. J Phys Oceanogr, 39: 1115–1132, doi:10.1175/2008JPO3900.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Xu.

Additional information

Foundation item: The Research and Development Special Fund for Public Welfare Industry (meteorology) of the China Meteorological Adminstration under contract No.2008416022; the Ocean Public Welfare Scientific Research Project of State Oceanic Administration of China under contract No.200905012-4; the National Natural Science Foundation of China under contract Nos 40730106, 41075091 and 41105087; the National Basic Research Program(973 Program) of China under contract No. 2010CB951802.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Xu, Y. Interannual variations of the air-sea carbon dioxide exchange in the different regions of the Pacific Ocean. Acta Oceanol. Sin. 32, 71–79 (2013). https://doi.org/10.1007/s13131-013-0291-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-013-0291-7

Key words

Navigation