Skip to main content

Advertisement

Log in

Ecological patterns strongly impact the biogeography of western Palaearctic longhorn beetles (Coleoptera: Cerambycoidea)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

We aim to unravel the biogeographic structuring of western Palaearctic longhorn beetles with focus on the location of different refugia, barriers to dispersal and postglacial range expansions with their particular filters. The interaction of different ecological features with these structures is analysed. The western Palaearctic was divided into 95 geographic entities. We produced presence-only matrices for all 955 Cerambycoidea species autochthonous to this area and derived species richness distributions and extracted faunal regions and faunal elements by cluster analyses and principal component analyses. Similar analyses were performed for sub-families and ecological groups. Longhorn beetles show a strong biogeographic structuring in the western Palaearctic. Species numbers strongly decrease to the north and west. Less mobile species and root feeders mostly contribute to the fauna of the Mediterranean region, whilst mobile species are more widespread. Feeders on broad-leaved trees dominate in western Europe, whilst feeders on coniferous trees are most important in northern Europe. Our results support multiple refugia in the Mediterranean region and underline the importance of Provence, Crimea and Crete as such refugia. Crete even might be an area of old endemism. The Atlanto- and the Ponto-Mediterranean regions are more strongly structured than assumed in classical biogeography. Mediterranean assemblages are mostly composed of non-flying species, root feeders and species with small distributions not found outside their glacial refugia. Tree feeders left their glacial retreats with their host plants. These range dynamics result in biogeographic structures with several dispersal barriers and filters composed of mountains, sea straits and climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akin, C., Bilgin, C. C., Beerli, P., Westaway, R., Ohst, T., Litvinchuk, S. N., et al. (2010). Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs were determined by geological processes and climate change in the Late Cenozoic. Journal of Biogeography, 37, 2111–2124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Araújo, M. B., Nogués-Bravo, D., Diniz-Filho, J. A. F., Haywood, A. M., Valdes, P. J., & Rahbek, C. (2008). Quarternary climate changes explain diversity among reptiles and amphibians. Ecography, 31, 8–15.

    Article  Google Scholar 

  • Baquero, R. A., & Telleria, J. L. (2001). Species richness, rarity and endemicity of European mammals: a biogeographical approach. Biodiversity and Conversation, 10, 29–44.

    Article  Google Scholar 

  • Baselga, A. (2008). Determinants of species richness, endemism and turnover in European longhorn beetles. Ecography, 31, 263–271.

    Article  Google Scholar 

  • Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134–143.

    Article  Google Scholar 

  • Baselga, A. (2012). The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography, 21, 1223–1232.

    Article  Google Scholar 

  • Baselga, A., & Leprieur, F. (2015). Comparing methods to separate components of beta diversity. Methods in Ecology and Evolution, 6, 1069–1079.

    Article  Google Scholar 

  • Böhme, M. U., Fritz, U., Kotenko, T., Džukić, G., Ljubisavljević, K., Tzankov, N., et al. (2007). Phylogeography and cryptic variation within the Lacerta viridis complex (Lacertidae, Reptilia). Zoologica Scripta, 36, 119–131.

    Article  Google Scholar 

  • Bosmans, R., Van Keer, J., Russel-Smith, A., Kronestedt, T., Alderweireldt, M., Bosselaers, J., et al. (2013). Spiders of Crete (Araneae). A catalogue of all currently known species from the Greek island of Crete. Nieuwsbrief van de Belgische Arachnologische Vereniging, 28, 5–147. Supplement 1.

    Google Scholar 

  • Cellinese, N., Smith, S. A., Edwards, E. J., Kim, S.-T., Haberle, R. C., Avramakis, M., et al. (2009). Historical biogeography of the endemic Campanulaceae of Crete. Journal of Biogeography, 36, 1253–1269.

    Article  Google Scholar 

  • Cooper, S. J., Ibrahim, K. M., & Hewitt, G. M. (1995). Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Molecular Ecology, 4, 49–60.

    Article  CAS  PubMed  Google Scholar 

  • Danilevsky, M. L. (2010a). Additions and corrections to the new Catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010. Russian Entomological Journal, 19, 215–239.

    Google Scholar 

  • Danilevsky, M. L. (2010b). Additions and corrections to the new Catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010, Part II. Russian Entomological Journal, 19, 313–324.

    Google Scholar 

  • Danilevsky, M. L. (2012a). Additions and corrections to the new catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010, Part III. Munis Entomology & Zoology, 7, 109–173.

    Google Scholar 

  • Danilevsky, M. L. (2012b). Additions and corrections to the new catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010, Part IV. Humanity Space International Almanac, 1, 86–136.

    Google Scholar 

  • Danilevsky, M. L. (2012c). Additions and corrections to the new catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010, Part V. Humanity Space International Almanac, 1, 695–741.

    Google Scholar 

  • Danilevsky, M. L. (2012d). Additions and corrections to the new catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010, Part VI. Humanity Space International Almanac, 1, 900–943.

    Google Scholar 

  • Danilevsky, M. L. (2013). Additions and corrections to the new catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010, Part VII. Humanity Space International Almanac, 2, 170–210.

    Google Scholar 

  • Dapporto, L., Schmitt, T., Vila, R., Scalercio, S., Biermann, H., Dinca, V., et al. (2011). Phylogenetic island disequilibrium: evidence for ongoing long-term population dynamics in two Mediterranean butterflies. Journal of Biogeography, 38, 854–867.

    Article  Google Scholar 

  • Dapporto, L., Bruschini, C., Dincă, V., Vila, R., & Dennis, R. L. (2012). Identifying zones of phenetic compression in West Mediterranean butterflies (Satyrinae): refugia, invasion and hybridization. Diversity and Distributions, 18, 1066–1076.

    Article  Google Scholar 

  • Dapporto, L., Ramazzotti, M., Fattorini, S., Talavera, G., Vila, R., & Dennis, R. L. (2013). Recluster: an unbiased clustering procedure for beta‐diversity turnover. Ecography, 36, 1070–1075.

    Article  Google Scholar 

  • Dapporto, L., Fattorini, S., Vodă, R., Dincă, V., & Vila, R. (2014). Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity. Journal of Biogeography, 41, 1639–1650.

    Article  Google Scholar 

  • Dapporto, L., Ciolli, G., Dennis, R. L., Fox, R., & Shreeve, T. G. (2015). A new procedure for extrapolating turnover regionalization at mid‐small spatial scales, tested on British butterflies. Methods in Ecology and Evolution, 6, 1287–1297.

    Article  Google Scholar 

  • Davis, M. (1984). The flight and migration ecology of the red milkweed beetle (Tetraopes tetraophthalmus). Ecology, 65, 230–234.

    Article  Google Scholar 

  • De Keyser, R., Shreeve, T. G., Breuker, C. J., Hails, R. S., & Schmitt, T. (2012). Polyommatus icarus butterflies in the British Isles: evidence for a bottleneck. Biological Journal of the Linnean Society, 107, 123–136.

    Article  Google Scholar 

  • De Lattin, G. (1949). Beiträge zur Zoogeographie des Mittelmeergebietes. Verhandlungen der deutschen Zoologischen Gesellschaft, Kiel, 143–151.

  • De Lattin, G. (1967). Grundriß der Zoogeographie. Jena: G. Fischer Verlag.

    Google Scholar 

  • Dengler, J. (2009). Which function describes the species-area relationship best? Review and empirical evaluation. Journal of Biogeography, 36, 728–744.

    Article  Google Scholar 

  • Dennis, R. L. H., Williams, W. R., & Shreeve, T. G. (1991). A multivariate approach to the determination of faunal structures among European butterfly species (Lepidoptera: Rhopalocera). Zoological Journal of the Linnean Society, 101, 1–49.

    Article  Google Scholar 

  • Dennis, R. L. H., Shreeve, T. G., & Williams, W. R. (1995). Taxonomic differentiation in species richness gradients among European butterflies (Papilionoidea, Hesperioidea): contribution of macroevolutionary dynamics. Ecography, 18, 27–40.

    Article  Google Scholar 

  • Dennis, R. L. H., Williams, W. R., & Shreeve, T. G. (1998). Faunal structures among European butterflies: evolutionary implications of bias for geography, endemism and taxonomic affiliations. Ecography, 21, 181–203.

    Article  Google Scholar 

  • Dobrovolski, R., Melo, A. S., Cassemiro, F. A., & Diniz‐Filho, J. A. F. (2012). Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 21, 191–197.

    Article  Google Scholar 

  • Fattorini, S. (2014). Tenebrionid beetle distributional patterns in Italy: multiple colonisation trajectories in a biogeographical crossroad. Insect Conservation and Diversity, 7, 144–160.

    Article  Google Scholar 

  • Fattorini, S., & Ulrich, W. (2012). Spatial distributions of European Tenebrionidae point to multiple postglacial colonization trajectories. Biological Journal of the Linnean Society, 105, 318–329.

    Article  Google Scholar 

  • Felesaki, I., Stoev, P., Simaiakis, S. M., & Mylonas, M. (2010). A catalogue of the millipedes of Crete (Myriapoda: Diplopoda). Natura Montenegrina, 9, 357–368.

    Google Scholar 

  • Fritz, U., Guicking, D., Kami, H., Arakelyan, M., Auer, M., Ayaz, D., et al. (2007). Mitochondrial phylogeography of European pond turtles (Emys orbicularis, Emys trinacris)—an update. Amphibia-Reptilia, 28, 418–426.

    Article  Google Scholar 

  • Goodwin, S., Pettit, M. A., & Spohr, J. (1994). Acalolepta vastator (Newman) (Coleoptera: Cerambycidae) infesting grapevines in the Hunter Valley, New South Wales 1. Distribution and dispersion. Australian Journal of Entomology, 33, 385–390.

    Article  Google Scholar 

  • Guilhaumon, F., Gimenez, O., Gaston, K. J., & Mouillot, D. (2008). Taxonomic and regional uncertainty in species-area relationships and the identification of richness hotspots. Proceedings of the National Academy of Sciences of the United States of America, 105, 15458–15463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habel, J. C., Schmitt, T., & Müller, P. (2005). The fourth paradigm pattern of post-glacial range expansion of European terrestrial species: the phylogeography of the Marbled White butterfly (Satyrinae, Lepidoptera). Journal of Biogeography, 32, 1489–1497.

    Article  Google Scholar 

  • Hagemeier, W. J. M., & Blair, M. J. (1997). The EBCC atlas of European breeding birds. Their distribution and abundance. London: T & AD Poyser.

    Google Scholar 

  • Hammer Ø., Harper, D. A. T. & Ryan P. D. (2001). Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9.

  • Hausdorf, B., & Sauer, J. (2009). Revision of the Helicellinae of Crete (Gastropoda: Hygromiidae). Zoological Journal of the Linnean Society, 157, 373–419.

    Article  Google Scholar 

  • Heiser, M., & Schmitt, T. (2010). Do different dispersal capacities influence the biogeography of the western Palearctic dragonflies (Odonata)? Biological Journal of the Linnean Society, 99, 177–195.

    Article  Google Scholar 

  • Heiser, M., & Schmitt, T. (2013). Tracking the boundary between the Palaearctic and the Oriental region: new insights from dragonflies and damselflies (Odonata). Journal of Biogeography, 40, 2047–2058.

    Article  Google Scholar 

  • Heiser, M., Dapporto, L., & Schmitt, T. (2014). Coupling impoverishment analyses and partitioning of beta diversity allows a comprehensive description of Odonata biogeography in the Western Mediterranean. Organisms, Diversity and Evolution, 14, 203–214.

    Article  Google Scholar 

  • Hesselbarth, G., van Oorschot, H., & Wagener, S. (1995). Die Tagfalter der Türkei und angrenzender Länder. Bocholt: S. Wagener Selbstverlag.

    Google Scholar 

  • Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276.

    Article  Google Scholar 

  • Hewitt, G. M. (1999). Postglacial recolonization of European biota. Biological Journal of the Linnean Society, 68, 87–112.

    Article  Google Scholar 

  • Holt, B. G., Lessard, J.-P., Borregaard, M. K., Fritz, S. A., Araújo, M. B., Dimitrov, D., Fabre, P.-H., Graham, C. H., Graves, G. R., Jønsson, K. A., Nogués-Bravo, D., Wang, Z., Whittaker, R. J., Fjeldså, J., & Rahbek, C. (2013). An update of Wallace’s zoogeographic regions of the world. Science, 339, 74–78.

    Article  CAS  PubMed  Google Scholar 

  • Horn, A., Roux-Morabito, G., Lieutier, F., & Kerdelhue, C. (2006). Phylogeographic structure and past history of the circum-Mediterranean species Tomicus destruens Woll. (Coleoptera: Scolytinae). Molecular Ecology, 15, 1603–1615.

    Article  CAS  PubMed  Google Scholar 

  • Husemann, M., Schmitt, T., Zachos, F. E., Ulrich, W., & Habel, J. C. (2014). Palaearctic biogeography revisited: evidence for the existence of a North African refugium for western Palaearctic biota. Journal of Biogeography, 41, 81–94.

    Article  Google Scholar 

  • Johnson, R. J. (1978). Multivariate statistical analysis in geography: a primer on the general linear model. London: Longman.

    Google Scholar 

  • Junker, M., Zimmermann, M., Ramos, A. A., Gros, P., Konvička, M., Nève, G., Rákosy, L., Tammaru, T., Castilho, R., & Schmitt, T. (2015). Three in one—multiple faunal elements within an endangered European butterfly species. PLoS One, 10, e0142282.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kindler, C., Böhme, W., Corti, C., Gvoždík Jablonski, D., Jandzik, D., Metallinou, M., et al. (2013). Mitochondrial phylogeography, contact zones and taxonomy of grass snakes (Natrix natrix, N. megalocephala). Zoologica Scripta, 42, 458–472.

    Article  Google Scholar 

  • Löbl, I., & Smetana, A. (Eds.). (2010). Catalogue of Palaearctic Coleoptera. Vol. 6. Chrysomeloidea. Stenstrup: Apollo Books.

    Google Scholar 

  • Löbl, I., & Smetana, A. (Eds.). (2011). Catalogue of Palaearctic Coleoptera. Errata (Vol. 7). Stenstrup: Apollo Books.

    Google Scholar 

  • Magri, D. (2008). Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). Journal of Biogeography, 35, 450–463.

    Article  Google Scholar 

  • Magri, D., Fineschi, S., Bellarosa, R., Buonamici, A., Sebastiani, F., Schirone, B., et al. (2007). The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Molecular Ecology, 16, 5259–5266.

    Article  CAS  PubMed  Google Scholar 

  • Marmi, J., López-Giráldez, F., Macdonald, D. W., Calafell, F., Zholnerovskaya, E., & Domingo-Roura, X. (2006). Mitochondrial DNA reveals a strong phylogeographic structure in the badger across Eurasia. Molecular Ecology, 15, 1007–1020.

    Article  CAS  PubMed  Google Scholar 

  • Meusel, H., Jäger, E., & Weinert, E. (1965). Vergleichende Chorologie der zentraleuropäischen Flora 1 (Text und Karten). Jena: Fischer Verlag.

    Google Scholar 

  • Miroshnikov, A. I. (2011). The longicorn beetles (Cerambycidae) in «Catalogue of Palaearctic Coleoptera. Stenstrup. 2010» remarks and additions. Entomologia Kubanica, Supplement, 1, 1–113.

    Google Scholar 

  • Mouillot, D., De Bortoli, J., Leprieur, F., Parravicini, V., Kulbicki, M., & Bellwood, D. R. (2013). The challenge of delineating biogeographical regions: nestedness matters for Indo‐Pacific coral reef fishes. Journal of Biogeography, 40, 2228–2237.

    Article  Google Scholar 

  • Özdikmen, H. (2010). The Turkish Dorcadiini with zoogeographical remarks (Coleoptera: Cerambycidae: Lamiinae). Munis Entomology & Zoology, 5, 380–498.

    Google Scholar 

  • Özdikmen, H. (2011a). Additions and corrections to the new Catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana (2010) for Turkish taxa. Munis Entomology & Zoology, 6, 686–734.

    Google Scholar 

  • Özdikmen, H. (2011b). A propose for acceptation of a single genus as Judolia Mulsant, 1863 instead of the genera Judolia Mulsant, 1863 and Pachytodes Pic, 1891 (Coleoptera: Cerambycidae: Lepturinae: Lepturini). Munis Entomology & Zoology, 6, 900–904.

    Google Scholar 

  • Parmakelis, A., Pfenninger, M., Spanos, L., Papagiannakis, G., Louis, C., & Mylonas, M. (2005). Inference of a radiation in Mastus (Gastropoda, Pulmonata, Enidae) on the island of Crete. Evolution, 59, 991–1005.

    Article  PubMed  Google Scholar 

  • Parmakelis, A., Stathi, I., Chatzaki, M., Simaiakis, S., Spanos, L., Louis, C., et al. (2006). Evolution of Mesobuthus gibbosus (Brullé, 1832) (Scorpiones: Buthidae) in the northeastern Mediterranean region. Molecular Ecology, 15, 2883–2894.

    Article  CAS  PubMed  Google Scholar 

  • Peck, S. B. (2001). Smaller orders of insects of the Galapagos Islands, Ecuador: evolution, ecology, and diversity. Ottawa: NRC Research Press.

    Google Scholar 

  • Pesarini, C., & Sabbadini, A. (2004). Ricerche sui Dorcadiini di Grecia. I. Le specie del Peloponneso (Coleoptera Cerambycidae). Atti della Società italiana di scienze naturali e del Museo civico di storia naturale di Milano, 145, 133–153.

    Google Scholar 

  • Pesarini, C., & Sabbadini, A. (2007). Ricerche sui Dorcadiini di Grecia. II. Le specie della Grecia centromeridionale e quelle del gruppo Dorcadion kozanii (Coleoptera Cerambycidae). Atti della Società italiana di scienze naturali e del Museo civico di storia naturale di Milano, 145, 35–83.

    Google Scholar 

  • Pesarini, C., & Sabbadini, A. (2008). Ricerche sui Dorcadiini di Grecia. III. Le specie di Neodorcadion Ganglbauer, 1884, quelle del gruppo di Dorcadion ljubetense e descrizione della nuova specie Dorcadion ariannae (Coleoptera Cerambycidae). Atti della Società italiana di scienze naturali e del Museo civico di storia naturale di Milano, 149, 109–124.

    Google Scholar 

  • Pesarini, C., & Sabbadini, A. (2010). Ricerche sui Dorcadiini di Grecia. IV. Le specie della Macedonia e della Tracia (Coleoptera Cerambycidae). Atti della Società italiana di scienze naturali e del Museo civico di storia naturale di Milano, 151, 179–216.

    Google Scholar 

  • Podani, J. (1997). On the sensitivity of ordination and classification methods to variation in the input order of data. Journal of Vegetation Science, 8, 153–156.

    Article  Google Scholar 

  • Podnar, M., Mayer, W., & Tvrtkovic, N. (2005). Phylogeography of the Italian wall lizard, Podarcis sicula, as revealed by mitochondrial DNA sequences. Molecular Ecology, 14, 575–588.

    Article  CAS  PubMed  Google Scholar 

  • Rákosy, L., Heiser, M., Manci, C.-O., & Schmitt, T. (2013). Strong divergences in regional distributions in Romania: recent ecological constraints in dragonflies (Odonata) versus ancient biogeographical patterns in butterflies (Lepidoptera: Rhopalocera). Insect Conservation and Diversity, 6, 145–154.

    Article  Google Scholar 

  • Reinig, W. F. (1937). Die Holarktis. Ein Beitrag zur diluvialen und alluvialen Geschichte der zirkumpolaren Faunen- und Florenelemente. Jena: G. Fischer Verlag.

    Google Scholar 

  • Reyjol, Y., Hugueny, B., Pont, D., Bianco, P. G., Beier, U., Caiola, N., et al. (2007). Patterns in species richness and endemism of European freshwater fish. Global Ecology and Biogeography, 16, 65–75.

    Article  Google Scholar 

  • Santucci, F., Emerson, B., & Hewitt, G. M. (1998). Mitochondrial DNA phylogeography of European hedgehogs. Molecular Ecology, 7, 1163–1172.

    Article  CAS  PubMed  Google Scholar 

  • Sauer, J., & Hausdorf, B. (2010). Reconstructing the evolutionary history of the radiation of the land snail genus Xerocrassa on Crete based on mitochondrial sequences and AFLP markers. BMC Evolutionary Biology, 10, 299.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schedl, W. (2011). Überblick über die Arten-Diversität der Pflanzenwespen der griechischen Insel Kreta (Insecta: Hymenoptera: Symphyta). Linzer Biologische Beiträge, 43, 1259–1267.

    Google Scholar 

  • Schmitt, T. (2007). Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology, 4, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitt, T. (2009). Biogeographical and evolutionary importance of the European high mountain systems. Frontiers in Zoology, 6, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitt, T., & Seitz, A. (2001). Allozyme variation in Polyommatus coridon (Lepidoptera: Lycaenidae): identification of ice-age refugia and reconstruction of post-glacial expansion. Journal of Biogeography, 28, 1129–1136.

    Article  Google Scholar 

  • Schmitt, T., & Varga, Z. (2009). Biogeography of the butterflies and larger moths of the Carpathian Basin and the Balkan Peninsula. In E. Stloukal, K. Hensel, P. Holec, M. Illyová, D. Jandzík, L. Jedlička, et al. (Eds.), Vývoj prírody Slovenska (pp. 143–166). Bratislava: Faunima.

    Google Scholar 

  • Schmitt, T., & Varga, Z. (2012). Extra-Mediterranean refugia: the rule and not the exception? Frontiers in Zoology, 9, 22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seddon, J. M., Santucci, F., Reeve, N. J., & Hewitt, G. M. (2001). DNA footprints of European hedgehogs, Erinaceus europaeus and E. concolor. Pleistocene refugia, postglacial expansion and colonization routes. Molecular Ecology, 10, 2187–2198.

    Article  CAS  PubMed  Google Scholar 

  • Seddon, J. M., Santucci, F., Reeve, N., & Hewitt, G. M. (2002). Caucasus mountains divide postulated postglacial colonization routes in the white-breasted hedgehog, Erinaceus concolor. Journal of Evolutionary Biology, 15, 463–467.

    Article  Google Scholar 

  • Simaiakis, S., Minelli, A., & Mylonas, M. (2004). The centipede fauna (Chilopoda) of Crete and its satellite islands (Greece, Eastern Mediterranean). Israel Journal of Zoology, 50, 367–418.

    Article  Google Scholar 

  • Stewart, J. R., & Lister, A. M. (2001). Cryptic northern refugia and the origins of the modern biota. Trends in Ecology and Evolution, 16, 608–613.

    Article  Google Scholar 

  • Stewart, J. R., Lister, A. M., Barnes, I., & Dalén, L. (2010). Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society of London B, 277, 661–671.

    Article  Google Scholar 

  • Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cosson, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453–464.

    Article  CAS  PubMed  Google Scholar 

  • Trigas, P., Panitsa, M., & Tsiftsis, S. (2013). Elevational gradient of vascular plant species richness and endemism in Crete—the effect of post-isolation mountain uplift on a continental island system. PLoS ONE, 8, e59425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ursenbacher, S., Conelli, A., Golay, P., Monney, J. C., Zuffi, M. A. L., Thiery, G., et al. (2006). Phylogeography of the asp viper (Vipera aspis) inferred from mitochondrial DNA sequence data: evidence for multiple Mediterranean refugial areas. Molecular Phylogenetics and Evolution, 38, 546–552.

    Article  CAS  PubMed  Google Scholar 

  • Varga, Z. S., & Schmitt, T. (2008). Types of oreal and oreotundral disjunction in the western Palearctic. Biological Journal of the Linnean Society, 93, 415–430.

    Article  Google Scholar 

  • Veith, M., Schmidtler, J. F., Kosuch, J., Baran, I., & Seitz, A. (2003). Palaeoclimatic changes explain Anatolian mountain frog evolution: a test for alternating vicariance and dispersal events. Molecular Ecology, 12, 185–199.

    Article  CAS  PubMed  Google Scholar 

  • Vives, E. (1976). Contribución al conocimiento de los Iberodorcadion Breuning (Col. Cerambycidae). Miscellanea Zoologica, 3, 163–168.

    Google Scholar 

  • Vives, E. (1983). Revision del Género Iberodorcadion Coleopteros Cerambícidos. Madrid: Museo Nacional de Ciences Naturales CSIC.

    Google Scholar 

  • Vives, E. (2000). Fauna Iberica 12. Coleoptera Cerambycidae. Madrid: Museo Nacional de Ciences Naturales CSIC.

    Google Scholar 

  • Ysnel, F., Petillon, J., Gerard, E., & Canard, A. (2008). Assessing the conservation value of the spider fauna across the West Palearctic area. Journal of Arachnology, 36, 457–463.

    Article  Google Scholar 

  • Zinetti, F., Dapporto, L., Vovlas, A., Chelazzi, G., Bonelli, S., Balletto, E., et al. (2013). When the rule becomes the exception. No evidence of gene flow between two Zerynthia cryptic butterflies suggests the emergence of a new model group. PLoS ONE, 8, e65746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Fonds National de la Recherche de Luxembourg (grant 955375) for granting the scholarship of FV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Vitali.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitali, F., Schmitt, T. Ecological patterns strongly impact the biogeography of western Palaearctic longhorn beetles (Coleoptera: Cerambycoidea). Org Divers Evol 17, 163–180 (2017). https://doi.org/10.1007/s13127-016-0290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-016-0290-6

Keywords

Navigation