Skip to main content
Log in

Distributional modeling of Mantophasmatodea (Insecta: Notoptera): a preliminary application and the need for future sampling

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Insects are the most diverse animal group, with remarkable and critical ecological roles, but the understanding of the taxonomic diversity, distribution, and biology of the overwhelming majority of lineages remains in its incipient stages. One means of addressing the lack of reliable distributional data for many groups is to predict probable records using species distribution models (SDMs), and this is particularly useful for generally undersampled and rarely encountered groups. Here, we use existing distribution records for species and genera of Mantophasmatodea (Insecta: Notoptera) to generate SDMs and discuss their utility for future sampling efforts. We used two different algorithms (Envelope Score and MaxEnt) to generate potential distributions and indicate areas for future field surveys for some of the genera and species of Mantophasmatodea with at least 10 unique occurrence records. The models showed good predictive capability (true skill statistics >0.9), with different taxa exhibiting variables, endemic ranges largely in southern and southwestern Africa, areas under considerable risk from climate change. South and Southwest Africa are the best places to focus sampling efforts for empirical data on current occurrences and any possible future shifts, as well as the potential for discovery of previously unknown species. These results also highlight the need to study the smaller and lesser known lineages of invertebrates that may not represent charismatic target taxa but nonetheless harbor unique life histories with unknown ecological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232.

    Article  Google Scholar 

  • Anderson, R. P., & Gonzalez, I., Jr. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecological Modelling, 222, 2796–2811.

    Article  Google Scholar 

  • Anderson, R. P., & Raza, A. (2010). The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography, 37, 1378–1393.

  • Arillo, A., & Engel, M. S. (2006). Rock crawlers in Baltic amber (Notoptera: Mantophasmatodea). American Museum Novitates, 3539, 1–10.

    Article  Google Scholar 

  • Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O., Swartz, B., Quental, T. B., et al. (2011). Has the Earth’s sixth mass extinction already arrived? Nature, 471, 51–57.

    Article  CAS  PubMed  Google Scholar 

  • Barry, S., & Elith, J. (2006). Error and uncertainty in habitat models. Journal of Applied Ecology, 43, 413–423.

    Article  Google Scholar 

  • Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., et al. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222, 1810–1819.

    Article  Google Scholar 

  • Bawa, K. S., Kress, W. J., & Nadkarni, N. M. (2004). Beyond paradise—meeting the challenges in tropical biology in the 21st century. Biotropica, 36, 276–284.

    Article  Google Scholar 

  • Bebber, D. P., Carine, M. A., Wood, J. R. I., Wortley, A. H., Harris, D. J., Prance, G. T., et al. (2010). Herbaria are a major frontier for species discovery. Proceedings of the National Academy of Sciences of the United States of America, 107, 22169–22171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buder, G., & Klass, K.-D. (2013). The morphology of tarsal processes in Mantophasmatodea. Deutsche Entomologische Zeitschrift, 60, 5–23.

    Google Scholar 

  • Cardoso, P., Erwin, T. L., Borges, P. A. V., & New, T. R. (2011). The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation, 144, 2647–2655.

    Article  Google Scholar 

  • Carvalho, M. R., Ebach, M. C., Williams, D. M., Nihei, S. S., Rodrigues, M. T., Grant, T., et al. (2014). Does counting species count as taxonomy? On misrepresenting systematics, yet again. Cladistics, 30, 322–329.

    Article  Google Scholar 

  • Damgaard, J., Klass, K.-D., Picker, M. D., & Buder, G. (2008). Phylogeny of the heelwalkers (Insecta: Mantophasmatodea) based on mtDNA sequences, with evidence for additional taxa in South Africa. Molecular Phylogenetics and Evolution, 47, 443–462.

    Article  CAS  PubMed  Google Scholar 

  • De Siqueira, M. F., Durigan, G., De Marco Jr, P., & Peterson, A. T. (2009). Something from nothing: using landscape similarity and ecological niche modeling to find rare plant species. Journal for Nature Conservation, 17, 25–32.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F., Bini, L. M., Rangel, T. F. L. V. B., Loyola, R. D., Hof, C., Nogues-Bravo, D., & Araújo, M. B. (2009). Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography, 32, 897–906.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F., De Marco Jr, P., & Hawkins, B. A. (2010). Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conservation and Diversity, 3, 172–179.

    Google Scholar 

  • Diniz-Filho, J. A. F., Loyola, R. D., Raia, P., Mooers, A. O., & Bini, L. M. (2013). Darwinian shortfalls in biodiversity conservation. Trends in Ecology & Evolution, 28, 689–95.

    Article  Google Scholar 

  • Ebach, M. C., Valdecasas, A. G., & Wheeler, Q. D. (2011). Impediments to taxonomy and users of taxonomy: accessibility and impact evaluation. Cladistics, 27, 550–557.

    Article  Google Scholar 

  • Eberhard, M. J. B. (2009). Kurze Vorstellung der Ordnung Mantophasmatodea (Insecta). Entomologica Austriaca, 16, 73–84.

    Google Scholar 

  • Eberhard, M. J. B., & Eberhard, S. H. (2013). Evolution and diversity of vibrational signals in Mantophasmatodea (Insecta). Journal of Insect Behavior, 26, 352–370.

    Article  Google Scholar 

  • Eberhard, M. J. B., Picker, M. D., & Klass, K.-D. (2011). Sympatry in Mantophasmatodea, with the description of a new species and phulogenetic considerations. Organisms, Diversity & Evolution, 11, 43–59.

    Article  Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.

    Article  Google Scholar 

  • Engel, M. S., & Grimaldi, D. A. (2004). A new rock crawler in Baltic amber, with comments on the order (Mantophasmatodea: Mantophasmatidae). American Museum Novitates, 3431, 1–11.

    Article  Google Scholar 

  • Ferro, V. G., Lemes, P., Melo, A. S., & Loyola, R. (2014). The reduced effectiveness of protected areas under climate change threatens Atlantic Forest tiger moths. PLoS One, 9, e107792.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49.

    Article  Google Scholar 

  • Fontaine, B., Perrard, A., & Bouchet, P. (2012). 21 years of shelf life between discovery and description of new species. Current Biology, 22, R943–R944.

    Article  CAS  PubMed  Google Scholar 

  • Google Inc. (2015). Google Earth, version 7.0.3.8542. Mountain View, CA: Google Incorporated.

  • Graham, C. H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution, 19, 497–503.

    Article  Google Scholar 

  • Grimaldi, D., & Engel, M. S. (2005). Evolution of the insects (1st ed.). Cambridge: Cambridge University Press.

  • Guareschi, S., Bilton, D. T., Velasco, J., Millán, A., & Abellán, P. (2015). How well do protected area networks support taxonomic and functional diversity in non-target taxa? The case of Iberian freshwaters. Biological Conservation, 187, 134–144.

    Article  Google Scholar 

  • Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993–1009.

    Article  Google Scholar 

  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • Hinojosa-Diáz, I. A., Yáñez-Ordóñez, O., Chen, G., Peterson, A. T., & Engel, M. S. (2005). The North American invasion of the giant resin bee (Hymenoptera: Megachilidae). Journal of Hymenoptera Research, 14, 69–77.

    Google Scholar 

  • Hinojosa-Diáz, I. A., Bonaccorso, E., & Engel, M. S. (2006). The potential distribution of Zorotypus hubbardi Caudell (Zoraptera: Zorotypidae) in North America, as predicted by ecological niche modeling. Proceedings of the Entomological Society of Washington, 108, 860–867.

    Google Scholar 

  • Hinojosa-Díaz, I. A., Feria-Arroyo, T. P., & Engel, M. S. (2009). Potential distribution of orchid bees outside their native range: the cases of Eulaema polychroma (Mocsáry) and Euglossa viridissima Friese in the USA (Hymenoptera: Apidae). Diversity and Distributions, 15, 421–428.

  • Hong, S. K., & Lee, J. A. (2006). Global environmental changes in terrestrial ecosystems. International issues and strategic solutions: introduction. Ecological Research, 21, 783–787.

    Article  Google Scholar 

  • Huntley, B. J. (1988). Conserving and monitoring biotic diversity: some African examples. In E. O. Wilson (Ed.), Biodiversity (1st ed., pp. 248–260). Washington, DC: National Academies Press.

    Google Scholar 

  • Jiménez-Valverde, A., Peterson, A. T., Soberón, J., Overton, J. M., Aragon, P., & Lobo, J. M. (2011). Use of niche models in invasive species risk assessments. Biological Invasions, 13, 2785–2797.

    Article  Google Scholar 

  • Jürgens, N., Schmiedel, U., Haarmeyers, D. H., Dengler, J., Finckh, M., Goetze, D., et al. (2012). The BIOTA biodiversity observatories in Africa—a standardized framework for large-scale environmental monitoring. Environmental Monitoring and Assessment, 184, 655–678.

    Article  PubMed  Google Scholar 

  • Kim, K. C. (1993). Biodiversity, conservation and inventory: why insects matter. Biodiversity and Conservation, 2, 191–214.

    Article  Google Scholar 

  • Klass, K.-D., Zompro, O., Kristensen, N. P., & Adis, J. (2002). Mantophasmatodea: a new insect order with extant members in the Afrotropics. Science, 296, 1456–1459.

    Article  CAS  PubMed  Google Scholar 

  • Klass, K.-D., Picker, M. D., Damgaard, J., van Noort, S., & Toko, K. (2003). The taxonomy, genitalic morphology, and phylogenetic relationships of southern African Mantophasmatodea (Insecta). Entomologische Abhandlungen, 61, 3–67.

    Google Scholar 

  • Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution, 29, 107–16.

    Article  Google Scholar 

  • Lemes, P., & Loyola, R. D. (2013). Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PLoS One, 8, e54323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis, S. L., & Maslin, M. A. (2015). Defining the Anthropocene. Nature, 519, 171–180.

    Article  CAS  PubMed  Google Scholar 

  • Losey, J. E., & Vaughan, M. (2006). The economic value of ecological services provided by insects. BioScience, 56, 311.

    Article  Google Scholar 

  • Mantyka-Pringle, C. D., Visconti, P., Di Marco, M., Martin, T. G., Rondinini, C., & Rhodes, J. R. (2015). Climate change modifies risk of global biodiversity loss due to land-cover change. Biological Conservation, 187, 103–111.

    Article  Google Scholar 

  • Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., & Thuiller, W. (2009). Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 15, 59–69.

    Article  Google Scholar 

  • Martínez-Gordillo, D., Rojas-Soto, O., & Monteros AE, D. l. (2010). Ecological niche modelling as an exploratory tool for identifying species limits: an example based on Mexican muroid rodents. Journal of Evolutionary Biology, 23, 259–70.

    Article  PubMed  Google Scholar 

  • Martins, A. C., Silva, D. P., De Marco Jr, P., & Melo, G. A. R. (2015). Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. Journal of Insect Conservation, 19, 33–43.

    Article  Google Scholar 

  • Muñoz, M. E. S., De Giovanni, R., de Siqueira, M. F., Sutton, T., Brewer, P., Pereira, R. S., et al. (2011). openModeller: a generic approach to species’ potential distribution modelling. Geoinformatica, 15, 111–135.

    Article  Google Scholar 

  • Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 5, 1198–1205.

    Article  Google Scholar 

  • Newbold, T. (2010). Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Progress in Physical Geography, 34, 3–22.

    Article  Google Scholar 

  • Nix, H. A. (1986). A biogeographic analysis of Australian elapid snakes. In R. Longmore (Ed.), Atlas of Elapid snakes of Australia—Australian flora and fauna series number 7 (1st ed., pp. 4–15). Canberra: Australian Government Publishing Service.

    Google Scholar 

  • Nóbrega, C. C., & De Marco Jr, P. (2011). Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Diversity and Distributions, 17, 491–505.

    Article  Google Scholar 

  • Ollerton, J., Erenler, H., Edwards, M., & Crockett, R. (2014). Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science, 346, 1360–1362.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.

    Article  Google Scholar 

  • Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • Picker, M. D., Colville, J. F., & van Noort, S. (2002). Mantophasmatodea now in South Africa. Science, 298, 961–964.

    Google Scholar 

  • Piñero, R., Aguilar, J. F., Munt, D. D., & Feliner, G. N. (2007). Ecology matters: Atlantic-Mediterranean disjunction in the sand-dune shrub Armeria pungens (Plumbaginaceae). Molecular Ecology, 16, 2155–2171.

    Article  Google Scholar 

  • Predel, R., Neupert, S., Huetteroth, W., Kahnt, J., Waidelich, D., & Roth, S. (2012). Peptidomics-based phylogeny and biogeography of Mantophasmatodea (Hexapoda). Systematic Biology, 61, 609–629.

    Article  PubMed  Google Scholar 

  • Procheş, Ş. (2014). Relictual distributions in southern and East Africa: a “Khoisan fring” in heelwalkers (Mantophasmatodea). North-Western Journal of Zoology, 10, 300–304.

    Google Scholar 

  • Pyke, G. H., & Ehrlich, P. R. (2010). Biological collections and ecological/environmental research: a review, some observations and a look to the future. Biological Reviews, 85, 247–266.

    Article  PubMed  Google Scholar 

  • Rafael, J. A., Aguiar, A. P., & Amorim, D. S. (2009). Knowledge of insect diversity in Brazil: challenges and advances. Neotropical Entomology, 38, 565–570.

    Article  PubMed  Google Scholar 

  • Rangel, T. F., & Loyola, R. D. (2012). Labeling ecological niche models. Natureza & Conservação, 10, 119–126.

    Article  Google Scholar 

  • Rasmont, P., Franzén, M., Lecocq, T., Harpke, A., Roberts, S. P. M., Biesmeijer, J. C., et al. (2015). Climatic risk and distribution atlas of European bumblebees (1st ed.). Sofia, Bulgaria: Pensoft Publishers.

    Google Scholar 

  • Raxworthy, C. J., Martínez-Meyer, E., Horning, N., Nussbaum, R. A., Schneider, G. E., Ortega-Huerta, M. A., & Peterson, A. T. (2003). Predicting distributions of known and unknown reptile species in Madagascar. Nature, 426, 837–841.

    Article  CAS  PubMed  Google Scholar 

  • Raxworthy, C. J., Ingram, C. M., Rabibisoa, N., & Pearson, R. G. (2007). Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Systematic Biology, 56, 907–23.

    Article  PubMed  Google Scholar 

  • Richards, C. L., Carstens, B. C., & Knowles, L. L. (2007). Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses. Journal of Biogeography, 34, 1833–1845.

    Article  Google Scholar 

  • Rocchini, D., Hortal, J., Lengyel, S., Lobo, J. M., Jiménez-Valverde, A., Ricotta, C., et al. (2011). Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Progress in Physical Geography, 35, 211–226.

    Article  Google Scholar 

  • Roth, S., Molina, J., & Predel, R. (2014). Biodiversity, ecology, and behavior of the recently discovered insect order Mantophasmatodea. Frontiers in Zoology, 11, 70.

    Article  Google Scholar 

  • Schulman, L., Toivonen, T., & Ruokolainen, K. (2007). Analysing botanical collecting effort in Amazonia and correcting for it in species range estimation. Journal of Biogeography, 34, 1388–1399.

    Article  Google Scholar 

  • Silva, D. P., Aguiar, A. J. C., Melo, G. A. R., Anjos-Silva, E. J., & De Marco Jr, P. (2013). Amazonian species within the Cerrado savanna: new records and potential distribution for Aglae caerulea (Apidae: Euglossini). Apidologie, 44, 673–683.

    Article  Google Scholar 

  • Silva, D. P., Gonzalez, V. H., Melo, G. A. R., Lucia, M., Alvarez, L. J., & De Marco Jr, P. (2014). Seeking the flowers for the bees: integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecological Modelling, 273, 200–209.

    Article  Google Scholar 

  • Sousa-Baena, M. S., Garcia, L. C., & Peterson, A. T. (2014). Completeness of digital accessible knowledge of the plants of Brazil and priorities for survey and inventory. Diversity and Distributions, 20, 369–381.

    Article  Google Scholar 

  • Strange, J. P., Koch, J. B., Gonzalez, V. H., Nemelka, L., & Griswold, T. (2011). Global invasion by Anthidium manicatum (Linnaeus) (Hymenoptera: Megachilidae): assessing potential distribution in North America and beyond. Biological Invasions, 13, 2115–2133.

    Article  Google Scholar 

  • Thomas, J. A., Telfer, M. G., Roy, D. B., Preston, C. D., Greenwood, J. J. D., Asher, J., et al. (2004). Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science, 303, 1879–1881.

    Article  CAS  PubMed  Google Scholar 

  • Tocchio, L. J., Gurgel-Gonçalves, R., Escobar, L. E., & Peterson, A. T. (2015). Niche similarities among white-eared opossums (Mammalia, Didelphidae): is ecological niche modelling relevant to setting species limits? Zoologica Scripta, 44, 1–10.

    Article  Google Scholar 

  • Tylianakis, J. M., Didham, R. K., Bascompte, J., & Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351–1363.

    Article  PubMed  Google Scholar 

  • VanDerWal, J., Shoo, L. P., Graham, C., & William, S. E. (2009). Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecological Modelling, 220(4), 589–594.

    Article  Google Scholar 

  • von Maltitiz, G. P., & Scholes, R. J. (2008). Vulnerability of southern African biodiversity to climate change. In N. Leary, C. Conde, J. Kulkarni, A. Nyong, & J. Pulhin (Eds.), Climate change and vulnerability (1st ed., pp. 33–48). London: Earthscan.

    Google Scholar 

  • Wheeler, Q. D. (1990). Insect diversity and cladistic constraints. Annals of the Entomological Society of America, 83, 1031–1047.

    Article  Google Scholar 

  • Wheeler, Q. D., Knapp, S., Stevenson, D. W., Stevenson, J., Blum, S. D., Boom, B. M., et al. (2012). Mapping the biosphere: exploring species to understand the origin, organization and sustainability of biodiversity. Systematics and Biodiversity, 10, 1–20.

    Article  CAS  Google Scholar 

  • Whittaker, R. J., Araújo, M. B., Jepson, P., Ladle, R. J., Watson, J. E. M. A., & Willis, K. J. (2005). Conservation biogeography: assessment and prospect. Diversity and Distributions, 11, 3–23.

    Article  Google Scholar 

  • Wilson, E. O. (1987). The little things that run the world (the importance and conservation of invertebrates). Conservation Biology, 1, 344–346.

    Article  Google Scholar 

  • Wipfler, B., Pohl, H., & Predel, R. (2012). Two new genera and two new species of Mantophasmatodea (Insecta, Polyneoptera) from Namibia. ZooKeys, 166, 75.

    Article  PubMed  Google Scholar 

  • Wipfler, B., Klug, R., Ge, S.-Q., Bai, M., Göbbels, J., Yang, X.-K., & Hörnschemeyer, T. (2015). The thorax of Mantophasmatodea, the morphology of flightlessness, and the evolution of neopteran insects. Cladistics, 31, 50–70.

    Article  Google Scholar 

  • Zompro, O., Adis, J., & Weitschat, W. (2002). A review of the order Mantophasmatodea (Insecta). Zoologischer Anzeiger, 241, 269–279.

    Article  Google Scholar 

Download references

Acknowledgments

ZAS and AFAA received fellowships from Coordenação para o Aperfeiçoamento de Pessoal de Nível Superior—CAPES. PDMJ was constantly supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq. LMC has his PhD funded by CAPES—Brazil, Science Without Borders fellowship, process number 10075-13-5. The authors would like to thank the suggestions from Sara Varela to a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, D.P., Spigoloni, Z.A., Camargos, L.M. et al. Distributional modeling of Mantophasmatodea (Insecta: Notoptera): a preliminary application and the need for future sampling. Org Divers Evol 16, 259–268 (2016). https://doi.org/10.1007/s13127-015-0250-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0250-6

Keywords

Navigation