Skip to main content
Log in

New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics

  • Review
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The science of phylogenetics, and specially the subfield of molecular systematics, has grown exponentially not only in the amount of publications and general interest, but also especially in the amount of genetic data available. Modern phylogenomic analyses use large genomic and transcriptomic resources, yet a comprehensive molecular phylogeny of animals, including the newest types of data for all phyla, remains elusive. Future challenges need to address important issues with taxon sampling—especially for rare and small animals—orthology assignment, algorithmic developments, and data storage and to figure out better ways to integrate information from genomes and morphology in order to place fossils more precisely in the animal tree of life. Such precise placement will also aid in providing more accurate dates to major evolutionary events during the evolution of our closest kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud’homme, B., & de Rosa, R. (2000). The new animal phylogeny: reliability and implications. Proc Natl Acad Sci U S A, 97(9), 4453–4456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguinaldo, A. M. A., Turbeville, J. M., Lindford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., et al. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387, 489–493.

    Article  CAS  PubMed  Google Scholar 

  • Altenhoff, A. M., Schneider, A., Gonnet, G. H., & Dessimoz, C. (2011). OMA 2011: orthology inference among 1000 complete genomes. Nucleic Acids Res, 39, D289–D294. doi:10.1093/Nar/Gkq1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade, S. C. S., Montenegro, H., Strand, M., Schwartz, M., Kajihara, H., Norenburg, J. L., et al. (2014). A transcriptomic approach to ribbon worm systematics (Nemertea): resolving the Pilidiophora problem. Mol Biol Evol, 31(12), 3206–3215. doi:10.1093/molbev/msu253.

    Article  CAS  PubMed  Google Scholar 

  • Andrade, S. C. S., Novo, M., Kawauchi, G. Y., Worsaae, K., Pleijel, F., Giribet, G., et al. (2015). Articulating “archiannelids”: phylogenomics and annelid relationships, with emphasis on meiofaunal taxa. Molecular Biology and Evolution, doi: 10.1093/molbev/msv157.

  • Arcila, D., Pyron, R. A., Tyler, J. C., Ortí, G., & Betancur-R, R. (2015). An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae). Mol Phylogenet Evol, 82, 131–145. doi:10.1016/j.ympev.2014.10.011.

    Article  PubMed  Google Scholar 

  • Bradnam, K. R., Fass, J. N., Alexandrov, A., Baranay, P., Bechner, M., Birol, I., et al. (2013). Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience, 2(1), 10. doi:10.1186/2047-217X-2-10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burleigh, J. G., Alphonse, K., Alverson, A. J., Bik, H. M., Blank, C., Cirranello, A. L., et al. (2013). Next-generation phenomics for the Tree of Life. PLoS Currents Tree of Life, 5, doi: 10.1371/currents.tol.085c713acafc8711b2ff7010a4b03733.

  • Cannon, J. T., Kocot, K. M., Waits, D. S., Weese, D. A., Swalla, B. J., Santos, S. R., et al. (2014). Phylogenomic resolution of the hemichordate and echinoderm clade. Curr Biol, 24(23), 2827–2832. doi:10.1016/j.cub.2014.10.016.

    Article  CAS  PubMed  Google Scholar 

  • Carranza, S., Baguñà, J., & Riutort, M. (1997). Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. Mol Biol Evol, 14(5), 485–497.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (1998). A revised six-kingdom system of life. Biol Rev, 73, 203–266.

    Article  CAS  PubMed  Google Scholar 

  • Delsuc, F., Brinkmann, H., Chourrout, D., & Philippe, H. (2006). Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 439(7079), 965–968.

    Article  CAS  PubMed  Google Scholar 

  • Donoghue, M. J., Doyle, J. J., Gauthier, J., Kluge, A. G., & Rowe, T. (1989). The importance of fossils in phylogeny reconstruction. Annu Rev Ecol Syst, 20, 431–460.

    Article  Google Scholar 

  • Dopazo, H., Santoyo, J., & Dopazo, J. (2004). Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species. Bioinformatics, 20(Suppl 1), I116–I121.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., et al. (2008). Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452(7188), 745–749. doi:10.1038/nature06614.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, C. W., Howison, M., & Zapata, F. (2013). Agalma: an automated phylogenomics workflow. BMC Bioinformatics, 14, 330. doi:10.1186/1471-2105-14-330.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn, C. W., Giribet, G., Edgecombe, G. D., & Hejnol, A. (2014). Animal phylogeny and its evolutionary implications. Annu Rev Ecol Evol Syst, 45(1), 371–395. doi:10.1146/annurev-ecolsys-120213-091627.

    Article  Google Scholar 

  • Earl, D., Bradnam, K., St John, J., Darling, A., Lin, D. W., Fass, J., et al. (2011). Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res, 21(12), 2224–2241. doi:10.1101/Gr.126599.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebersberger, I., Strauss, S., & von Haeseler, A. (2009). HaMStR: profile hidden Markov model based search for orthologs in ESTs. BMC Evol Biol, 9, 157. doi:10.1186/1471-2148-9-157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgecombe, G. D., Giribet, G., Dunn, C. W., Hejnol, A., Kristensen, R. M., Neves, R. C., et al. (2011). Higher-level metazoan relationships: recent progress and remaining questions. Organisms, Diversity & Evolution, 11, 151–172. doi:10.1007/s13127-011-0044-4.

  • Egger, B., Lapraz, F., Tomiczek, B., Müller, S., Dessimoz, C., Girstmair, J., et al. (2015). A transcriptomic-phylogenomic analysis of the evolutionary relationships of flatworms. Curr Biol, 25(10), 1347–1353. doi:10.1016/j.cub.2015.03.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisen, J. A., & Fraser, C. M. (2003). Phylogenomics: intersection of evolution and genomics. Science, 300(5626), 1706–1707. doi:10.1126/science.1086292.

    Article  CAS  PubMed  Google Scholar 

  • Fernández, R., & Giribet, G. (2015). Unnoticed in the tropics: phylogenomic resolution of the poorly known arachnid order Ricinulei (Arachnida). Royal Society Open Science, 2(6), 150065. doi:10.1098/rsos.150065.

  • Fernández, R., Hormiga, G., & Giribet, G. (2014). Phylogenomic analysis of spiders reveals nonmonophyly of orb weavers. Curr Biol, 24(15), 1772–1777. doi:10.1016/j.cub.2014.06.035.

    Article  PubMed  Google Scholar 

  • Garwood, R. J., Sharma, P. P., Dunlop, J. A., & Giribet, G. (2014). A new stem-group Palaeozoic harvestman revealed through integration of phylogenetics and development. Curr Biol, 24, 1–7. doi:10.1016/j.cub.2014.03.039.

    Article  Google Scholar 

  • Gatesy, J., & O’Leary, M. A. (2001). Deciphering whale origins with molecules and fossils. TRENDS in Ecology and Evolution, 16, 562–570.

  • Giribet, G. (2008). Assembling the lophotrochozoan (=spiralian) tree of life. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 1513–1522.

  • Giribet, G. (2010). A new dimension in combining data? The use of morphology and phylogenomic data in metazoan systematics. Acta Zoologica (Stockholm), 91, 11–19. doi:10.1111/j.1463-6395.2009.00420.x.

  • Giribet, G. (2015). Morphology should not be forgotten in the era of genomics—a phylogenetic perspective. Zool Anz, 256, 96–103. doi:10.1016/j.jcz.2015.01.003.

    Article  Google Scholar 

  • Giribet, G., Carranza, S., Baguñà, J., Riutort, M., & Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Mol Biol Evol, 13(1), 76–84.

    Article  CAS  PubMed  Google Scholar 

  • Giribet, G., Distel, D. L., Polz, M., Sterrer, W., & Wheeler, W. C. (2000). Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Syst Biol, 49(3), 539–562.

  • González, V. L., Andrade, S. C. S., Bieler, R., Collins, T. M., Dunn, C. W., Mikkelsen, P. M., et al. (2015). A phylogenetic backbone for Bivalvia: an RNA-seq approach. Proc R Soc B Biol Sci, 282(1801), 20142332. doi:10.1098/rspb.2014.2332.

    Article  Google Scholar 

  • Halanych, K. M. (2004). The new view of animal phylogeny. Annu Rev Ecol Evol Syst, 35, 229–256.

    Article  Google Scholar 

  • Halanych, K. M. (2015). The ctenophore lineage is older than sponges? That cannot be right! Or can it? J Exp Biol, 218(Pt 4), 592–597. doi:10.1242/jeb.111872.

    Article  PubMed  Google Scholar 

  • Halanych, K. M., Bacheller, J. D., Aguinaldo, A. M. A., Liva, S. M., Hillis, D. M., & Lake, J. A. (1995). Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science, 267(5204), 1641–1643.

    Article  CAS  PubMed  Google Scholar 

  • Hausdorf, B., Helmkampf, M., Meyer, A., Witek, A., Herlyn, H., Bruchhaus, I., et al. (2007). Spiralian phylogenomics supports the resurrection of Bryozoa comprising ectoprocta and entoprocta. Mol Biol Evol, 24(12), 2723–2729. doi:10.1093/molbev/msm214.

    Article  CAS  PubMed  Google Scholar 

  • Hejnol, A., Obst, M., Stamatakis, A. M. O., Rouse, G. W., Edgecombe, G. D., et al. (2009). Assessing the root of bilaterian animals with scalable phylogenomic methods. Proceedings of the Royal Society B: Biological Sciences, 276, 4261–4270. doi:10.1098/rspb.2009.0896.

  • Helmkampf, M., Bruchhaus, I., & Hausdorf, B. (2008). Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept. Proc R Soc B Biol Sci, 275(1645), 1927–1933. doi:10.1098/rspb.2008.0372.

    Article  Google Scholar 

  • Jondelius, U., Ruiz-Trillo, I., Baguñà, J., & Riutort, M. (2002). The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zool Scr, 31, 201–215.

    Article  Google Scholar 

  • Kocot, K. M., Cannon, J. T., Todt, C., Citarella, M. R., Kohn, A. B., Meyer, A., et al. (2011). Phylogenomics reveals deep molluscan relationships. Nature, 447, 452–456. doi:10.1038/nature10382.

    Article  Google Scholar 

  • Kocot, K. M., Halanych, K. M., & Krug, P. J. (2013). Phylogenomics supports Panpulmonata: opisthobranch paraphyly and key evolutionary steps in a major radiation of gastropod molluscs. Mol Phylogenet Evol, 69(3), 764–771. doi:10.1016/j.ympev.2013.07.001.

    Article  PubMed  Google Scholar 

  • Kück, P., & Struck, T. H. (2014). BaCoCa—a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Mol Phylogenet Evol, 70, 94–98. doi:10.1016/j.ympev.2013.09.011.

    Article  PubMed  Google Scholar 

  • Kvist, S., & Siddall, M. E. (2013). Phylogenomics of Annelida revisited: a cladistic approach using genome-wide expressed sequence tag data mining and examining the effects of missing data. Cladistics, 29(4), 435–448. doi:10.1111/cla.12015.

    Article  Google Scholar 

  • Lartillot, N., Rodrigue, N., Stubbs, D., & Richer, J. (2013). PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol, 62(4), 611–615. doi:10.1093/Sysbio/Syt022.

    Article  CAS  PubMed  Google Scholar 

  • Laumer, C. E., Bekkouche, N., Kerbl, A., Goetz, F., Neves, R. C., Sørensen, M. V., et al. (2015a). Spiralian phylogeny informs the evolution of microscopic lineages. Curr Biol, 25(15), 2000–2006. doi:10.1016/j.cub.2015.06.068.

    Article  CAS  PubMed  Google Scholar 

  • Laumer, C. E., Hejnol, A., & Giribet, G. (2015b). Nuclear genomic signals of the “microturbellarian” roots of platyhelminth evolutionary innovation. eLife, 4, e05503. doi:10.7554/eLife.05503.

    Article  Google Scholar 

  • Lemer, S., Kawauchi, G. Y., Andrade, S. C. S., González, V. L., Boyle, M. J., & Giribet, G. (2015). Re-evaluating the phylogeny of Sipuncula through transcriptomics. Mol Phylogenet Evol, 83, 174–183. doi:10.1016/j.ympev.2014.10.019.

    Article  PubMed  Google Scholar 

  • Lopez, J. V., Bracken-Grissom, H., Collins, A. G., Collins, T., Crandall, K., Distel, D., et al. (2014). The global invertebrate genomics alliance (GIGA): developing community resources to study diverse invertebrate genomes. J Hered, 105(1), 1–18. doi:10.1093/jhered/est084.

    Article  CAS  Google Scholar 

  • López-Giráldez, F., Moeller, A. H., & Townsend, J. P. (2013). Evaluating phylogenetic informativeness as a predictor of phylogenetic signal for metazoan, fungal, and mammalian phylogenomic data sets. Biomed Research International, 2013, 621604. doi:10.1155/2013/621604.

  • Marlétaz, F., Martin, E., Perez, Y., Papillon, D., Caubit, X., Lowe, C. J., et al. (2006). Chaetognath phylogenomics: a protostome with deuterostome-like development. Curr Biol, 16(15), R577–R578.

    Article  PubMed  Google Scholar 

  • Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science, 346(6210), 763–767. doi:10.1126/science.1257570.

    Article  CAS  PubMed  Google Scholar 

  • Moroz, L. L., Kocot, K. M., Citarella, M. R., Dosung, S., Norekian, T. P., Povolotskaya, I. S., et al. (2014). The ctenophore genome and the evolutionary origins of neural systems. Nature, 510(7503), 109–114. doi:10.1038/nature13400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murienne, J., Edgecombe, G. D., & Giribet, G. (2010). Including secondary structure, fossils and molecular dating in the centipede tree of life. Mol Phylogenet Evol, 57, 301–313. doi:10.1016/j.ympev.2010.06.022.

    Article  PubMed  Google Scholar 

  • Nesnidal, M. P., Helmkampf, M., Bruchhaus, I., & Hausdorf, B. (2010). Compositional heterogeneity and phylogenomic inference of metazoan relationships. Mol Biol Evol, 27(9), 2095–2104. doi:10.1093/molbev/msq097.

    Article  CAS  PubMed  Google Scholar 

  • Nesnidal, M. P., Helmkampf, M., Meyer, A., Witek, A., Bruchhaus, I., Ebersberger, I., et al. (2013). New phylogenomic data support the monophyly of Lophophorata and an Ectoproct-Phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evol Biol, 13, 253. doi:10.1186/1471-2148-13-253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neves, R. C., Kristensen, R. M., & Wanninger, A. (2009). Three-dimensional reconstruction of the musculature of various life cycle stages of the cycliophoran Symbion americanus. J Morphol, 270(3), 257–270. doi:10.1002/jmor.10681.

    Article  PubMed  Google Scholar 

  • Nosenko, T., Schreiber, F., Adamska, M., Adamski, M., Eitel, M., Hammel, J., et al. (2013). Deep metazoan phylogeny: when different genes tell different stories. Mol Phylogenet Evol, 67(1), 223–233. doi:10.1016/j.ympev.2013.01.010.

    Article  PubMed  Google Scholar 

  • Novacek, M. J. (1992). Fossils as critical data for phylogeny. In M. J. Novacek & Q. D. Wheeler (Eds.), Extinction and phylogeny (1st ed., pp. 46–88). New York: Columbia University Press.

    Google Scholar 

  • Oakley, T. H., Wolfe, J. M., Lindgren, A. R., & Zaharoff, A. K. (2013). Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement, and pancrustacean phylogeny. Mol Biol Evol, 30(1), 215–233. doi:10.1093/molbev/mss216.

    Article  CAS  PubMed  Google Scholar 

  • Parham, J. F., Donoghue, P. C. J., Bell, C. J., Calway, T. D., Head, J. J., Holroyd, P. A., et al. (2012). Best practices for justifying fossil calibrations. Syst Biol, 61(2), 346–359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson, K. J., & Eernisse, D. J. (2001). Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evolution & Development, 3(3), 170–205.

  • Philippe, H., Lartillot, N., & Brinkmann, H. (2005). Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa and Protostomia. Mol Biol Evol, 22(5), 1246–1253.

    Article  CAS  PubMed  Google Scholar 

  • Philippe, H., Brinkmann, H., Martinez, P., Riutort, M., & Baguñà, J. (2007). Acoel flatworms are not Platyhelminthes: evidence from phylogenomics. PLoS One, 2, e717.

    Article  PubMed  PubMed Central  Google Scholar 

  • Philippe, H., Derelle, R., Lopez, P., Pick, K., Borchiellini, C., Boury-Esnault, N., et al. (2009). Phylogenomics revives traditional views on deep animal relationships. Curr Biol, 19, 1–17. doi:10.1016/j.cub.2009.02.052.

    Article  Google Scholar 

  • Philippe, H., Brinkmann, H., Copley, R. R., Moroz, L. L., Nakano, H., Poustka, A. J., et al. (2011). Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature, 470(7333), 255–258. doi:10.1038/nature09676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pick, K. S., Philippe, H., Schreiber, F., Erpenbeck, D., Jackson, D. J., Wrede, P., et al. (2010). Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships. Mol Biol Evol, 27(9), 1983–1987. doi:10.1093/molbev/msq089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyron, R. A. (2011). Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst Biol, 60(4), 466–481.

    Article  PubMed  Google Scholar 

  • Pyron, R. A. (2015). Post-molecular systematics and the future of phylogenetics. Trends Ecol Evol, 30(7), 384–389. doi:10.1016/j.tree.2015.04.016.

    Article  PubMed  Google Scholar 

  • Regier, J. C., Shultz, J. W., Zwick, A., Hussey, A., Ball, B., Wetzer, R., et al. (2010). Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature, 463, 1079–1083. doi:10.1038/nature08742.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J., Herniou, E. A., & Baguñà, J. (1999). Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science, 283(5409), 1919–1923.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, J. F., Pang, K., Schnitzler, C. E., Nguyen, A. D., Moreland, R. T., Simmons, D. K., et al. (2013). The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science, 342(6164), 1242592. doi:10.1126/science.1242592.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, P. P., & Giribet, G. (2014). A revised dated phylogeny of the arachnid order Opiliones. Front Genet, 5, 255. doi:10.3389/fgene.2014.00255.

    PubMed  PubMed Central  Google Scholar 

  • Sharma, P. P., Kaluziak, S., Pérez-Porro, A. R., González, V. L., Hormiga, G., Wheeler, W. C., et al. (2014). Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol Biol Evol, 31(11), 2963–2984. doi:10.1093/molbev/msu235.

  • Sigwart, J. D., & Lindberg, D. R. (2015). Consensus and confusion in molluscan trees: evaluating morphological and molecular phylogenies. Syst Biol, 64(3), 384–395. doi:10.5061/dryad.b4m2c.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, S., Wilson, N. G., Goetz, F., Feehery, C., Andrade, S. C. S., Rouse, G. W., et al. (2011). Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature, 480, 364–367. doi:10.1038/nature10526.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, M., Mazza-Curll, K. L., van Wolfswinkel, J. C., & Reddien, P. W. (2014). Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Curr Biol, 24(10), 1107–1113. doi:10.1016/j.cub.2014.03.042.

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis, A. (2014a). ExaBayes user’s manual.

    Google Scholar 

  • Stamatakis, A. (2014b). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. doi: 10.1093/bioinformatics/btu033.

  • Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., et al. (2015). Big Data: astronomical or genomical? PLoS Biol, 13(7), e1002195. doi:10.1371/journal.pbio.1002195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Struck, T. H., Paul, C., Hill, N., Hartmann, S., Hösel, C., Kube, M., et al. (2011). Phylogenomic analyses unravel annelid evolution. Nature, 471(7336), 95–98. doi:10.1038/nature09864.

    Article  CAS  PubMed  Google Scholar 

  • Struck, T. H., Wey-Fabrizius, A. R., Golombek, A., Hering, L., Weigert, A., Bleidorn, C., et al. (2014). Platyzoan paraphyly based on phylogenomic data supports a non-coelomate ancestry of Spiralia. Mol Biol Evol, 31(7), 1833–1849. doi:10.1093/molbev/msu143.

    Article  CAS  PubMed  Google Scholar 

  • Struck, T. H., Golombek, A., Weigert, A., Franke, F. A., Westheide, W., Purschke, G., et al. (2015). The evolution of annelids reveals two adaptive routes to the interstitial realm. Current Biology, 25(15), 1993–1999, doi:10.1016/j.cub.2015.06.007.

  • Telford, M. J., Lowe, C. J., Cameron, C. B., Ortega-Martinez, O., Aronowicz, J., Oliveri, P., et al. (2014). Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proc R Soc B Biol Sci, 281(1786), 20140479. doi:10.1098/rspb.2014.0479.

    Article  Google Scholar 

  • von Reumont, B. M., & Wägele, J. W. (2014). Advances in molecular phylogeny of crustaceans in the light of phylogenomic data. In J. W. Wägele & T. Bartholomaeus (Eds.), Deep metazoan phylogeny: the backbone of the tree of life. New insights from analyses of molecules, morphology, and theory of data analysis (pp. 385–398). Berlin/Boston: De Gruyter.

    Google Scholar 

  • Wanninger, A. (2015). Morphology is dead—long live morphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics. Frontiers in Ecology and Evolution, 3, 54. doi:10.3389/fevo.2015.00054.

  • Weigert, A., Helm, C., Meyer, M., Nickel, B., Arendt, D., Hausdorf, B., et al. (2014). Illuminating the base of the annelid tree using transcriptomics. Mol Biol Evol, 31(6), 1391–1401. doi:10.1093/molbev/msu080.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, W. C., Cartwright, P., & Hayashi, C. Y. (1993). Arthropod phylogeny: a combined approach. Cladistics, 9(1), 1–39.

    Article  Google Scholar 

  • Wheeler, W. C., Giribet, G., & Edgecombe, G. D. (2004). Arthropod systematics. The comparative study of genomic, anatomical, and paleontological information. In J. Cracraft & M. J. Donoghue (Eds.), Assembling the Tree of Life (pp. 281–295). New York: Oxford University Press.

    Google Scholar 

  • Whelan, N. V., Kocot, K. M., Moroz, L. L., & Halanych, K. M. (2015). Error, signal, and the placement of Ctenophora sister to all other animals. Proc Natl Acad Sci U S A, 112(18), 5773–5778. doi:10.1073/pnas.1503453112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, H. M., Matzke, N. J., Gillespie, R. G., & Griswold, C. E. (2013). Treating fossils as terminal taxa in divergence time estimation reveals ancient vicariance patterns in the palpimanoid spiders. Syst Biol, 62(2), 264–284. doi:10.1093/sysbio/sys092.

    Article  PubMed  Google Scholar 

  • Zapata, F., Wilson, N. G., Howison, M., Andrade, S. C. S., Jörger, K. M., Schrödl, M., et al. (2014). Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proc R Soc B Biol Sci, 281, 20141739. doi:10.1101/007039.

    Article  Google Scholar 

  • Zhang, G., Li, C., Li, Q., Li, B., Larkin, D. M., Lee, C., et al. (2014). Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 346(6215), 1311–1320. doi:10.1126/science.1251385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zrzavý, J., Mihulka, S., Kepka, P., Bezdek, A., & Tietz, D. (1998). Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics, 14(3), 249–285.

    Article  Google Scholar 

Download references

Acknowledgments

Andreas Wanninger solicited this review, based on work developed during the past few years in part supported by the US National Science Foundation (Grants #0334932, #0531757, #0732903, and #1457539). Much of the work discussed here has benefited from collaboration and discussions with close colleagues, especially Casey Dunn, Greg Edgecombe, Gustavo Hormiga, Prashant Sharma, Christopher Laumer, Sónia Andrade, Rosa Fernández, Sarah Lemer, David Combosch, and Sebastian Kvist. Christine Palmer and two anonymous reviewers provided additional criticism of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Giribet.

Additional information

This article is part of the Special Issue The new animal phylogeny: The first 20 years

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giribet, G. New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics. Org Divers Evol 16, 419–426 (2016). https://doi.org/10.1007/s13127-015-0236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0236-4

Keywords

Navigation