Skip to main content

Advertisement

Log in

“Septal compass” and “septal formula”: a new method for phylogenetic investigations of the middle ear region in the squirrel-related clade (Rodentia: Mammalia)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Here, we introduce the “septal compass” and the “septal formula” as a new method for phylogenetic investigations of the middle ear region in squirrel-related clade. The middle ear cavity is characterized by bony septa that divide the dorsally lying epitympanic recess and the ventrally lying tympanic cavity into several segments or diverticula. The distribution patterns of these septa are conservative among the squirrel-related clade and are restricted to the species, genus, and family level. In the studied outgroups represented by †Ischyromys typus and lagomorphs, no septa are found in the epitympanic recess and tympanic cavity. Therefore, the “septal compass” and the “septal formula” provide a new approach for phylogenetic interpretations of the middle ear region. It is user-optimized and can be modified for other rodent families and mammalian taxa and will facilitate phylogenetic assumptions in future investigations. Additionally, this method will enable the allocation of isolated tympanic bullae to the respective genus level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ade, M. (1999). External morphology and evolution of the rhinarium of Lagomorpha. Mitteilungen des Museums für Naturkunde Berlin Zoologische Reihe, 75, 191–216.

    Google Scholar 

  • Adkins, R. M., Walton, A. H., & Honeycutt, R. L. (2003). Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Molecular Phylogenetics and Evolution, 26, 409–420.

    Article  CAS  PubMed  Google Scholar 

  • Begall, S., & Burda, H. (2006). Acoustic communication and burrow acoustics are reflected in the ear morphology of the coruro (Spalacopus cyanus, Octodontidae), a social fossorial rodent. Journal of Morphology, 267, 382–390.

    Article  PubMed  Google Scholar 

  • Blanga-Kanfi, S., Miranda, H., Penn, O., Pupko, T., DeBry, R. W., & Huchon, D. (2009). Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evolutionary Biology, 9, 1–12.

    Article  Google Scholar 

  • Bondy, G. (1908). Beiträge zur vergleichenden Anatomie des Gehörorgans bei Säugern (Tympanicum, Membrana shrapnelli und Chordaverlauf). Anatomische Hefte, 35, 293–408.

    Article  Google Scholar 

  • Bugge, J. (1974). The cephalic arterial system in insectivores, primates, rodents and lagomorphs, with special reference to the systematic classification. Basel: S. Karger.

    Book  Google Scholar 

  • DeBry, R. W., & Sagel, R. M. (2001). Phylogeny of Rodentia (Mammalia) inferred from the nuclear-encoded gene IRBP. Molecular Phylogenetics and Evolution, 19(2), 290–301.

    Article  CAS  PubMed  Google Scholar 

  • Doran, A. H. G. (1879). Morphology of the Mammalian Ossicula auditus. Transactions of the Linnean Society of London, 1(7), 371–497.

    Article  Google Scholar 

  • Fabre, P.-H., Hautier, L., Dimitrov, D., & Douzery, E. J. P. (2012). A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary Biology, 12(88), 1–19.

    Google Scholar 

  • Farr, M. R. B., & Mason, M. J. (2008). Middle ear morphology in dormice (Rodentia: Gliridae). Mammalian Biology, 73, 330–334.

    Google Scholar 

  • Fleischer, G. (1973). Studien am Skelett des Gehörorgans der Säugetiere einschließlich des Menschen. Säugetierkundliche Mitteilungen, 21, 131–239.

    Google Scholar 

  • Fleischer, G. (1978). Evolutionary principles of the mammalian middle ear. Berlin: Springer Verlag.

    Book  Google Scholar 

  • Frahnert, S. (1999). Morphology and evolution of the Glires rostral cranium. Mitteilungen des Museums für Naturkunde Berlin Zoologische Reihe, 75, 229–246.

    Google Scholar 

  • Harrison, R. G., Bogdanowicz, S. M., Hoffmann, R. S., Yensen, E., & Sherman, P. W. (2003). Phylogeny and evolutionary history of the ground squirrels (Rodentia: Marmotinae). Journal of Mammalian Evolution, 10(3), 249–276.

    Article  Google Scholar 

  • Herron, M. D., Waterman, J. M., & Parkinson, C. L. (2005). Phylogeny and historical biogeography of African ground squirrels: the role of climate change in the evolution of Xerus. Molecular Ecology, 14, 2773–2788.

    Article  CAS  PubMed  Google Scholar 

  • Hooper, E. T. (1968). Anatomy of middle-ear walls and cavities in nine species of microtine rodents. Occassional Papers of the Museum of Zoology, 657, 1–28.

    Google Scholar 

  • Huchon, D., Madsen, O., Sibbald, M. J. J. B., Ament, K., Stanhope, M. J., Catzeflis, F., DeJong, W. W., & Douzery, E. J. P. (2002). Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Molecular Biology and Evolution, 19(7), 1053–1065.

    Article  CAS  PubMed  Google Scholar 

  • Hyrtl, J. (1845). Vergleichend-anatomische Untersuchungen über das innere Gehörorgan des Menschen und der Säugethiere. Prag: Friedrich Ehrlich.

    Google Scholar 

  • Lange, S., Burda, H., Wegner, R. E., Dammann, P., Begall, S., & Kawalika, M. (2007). Living in a “stethoscope”: borrow-acoustics promote auditory specializations in subterranean rodents. Naturwissenschaften, 94, 134–138.

    Article  CAS  PubMed  Google Scholar 

  • Lavocat, R. R. M., & Parent, J.-P. (1985). Phylogenetic analysis of middle ear feature in fossil and living rodents. In W. P. Luckett & J.-L. Hartenberger (Eds.), Evolutionary relationships among rodents: a multidisciplinary analysis. NATO ASI Series 92 (pp. 685–713). New York: Plenum Press.

    Google Scholar 

  • Lay, D. M. (1972). The anatomy, physiology, functional significance and evolution of specialized hearing organs of gerbilline rodents. Journal of Morphology, 138, 41–120.

    Article  CAS  PubMed  Google Scholar 

  • MacPhee, R. D. E. (1981). Auditory regions of primates and eutherian insectivores. Morphology, ontogeny, and character analysis. Basel: S. Karger.

    Google Scholar 

  • Maddison, W. P., & Maddison, D. R. (2015). Mesquite: a modular system for evolutionary analysis. Version 3.02. http://mesquiteproject.org.

  • Maier, W., Klingler, P., & Ruf, I. (2002). Ontogeny of the medial masseter muscle, pseudo-myomorphy, and the systematic position of the gliridae (Rodentia, Mammalia). Journal of Mammalian Evolution, 9(4), 253–269.

    Article  Google Scholar 

  • Major, C. J. F. (1873). Nagerüberreste aus Bohnerzen Süddeutschlands und der Schweiz. Nebst Beiträgen zu einer Odontographie von Ungulaten und Unguiculaten. Palaeontographica, 22(2), 75–130.

    Google Scholar 

  • Marivaux, L., Vianey-Liaud, M., & Jaeger, J.-J. (2004). High-level phylogeny of early Tertiary rodents: dental evidence. Zoological Journal of the Linnean Society, 142, 105–134.

    Article  Google Scholar 

  • Martin, T. (1992). Schmelzmikrostruktur in den Inzisiven alt- und neuwelticher hystricognather Nagetiere. Montpellier: Palaeovertebrata, Mémoire extraordinaire.

    Google Scholar 

  • McKenna, M. C., & Bell, S. K. (1997). Classification of mammals above the species level. New York: University Press.

    Google Scholar 

  • Meng, J. (1990). The auditory region of Reithroparamys delicatissimus (Mammalia, Rodentia) and its systematic implications. American Museum Novitates, 2972, 1–36.

    Google Scholar 

  • Mercer, J. M., & Roth, V. L. (2003). The effect of Cenozoic global change on squirrel phylogeny. Science, 299, 1568–1572.

    Article  CAS  PubMed  Google Scholar 

  • Mess, A. (1999). The rostral nasal skeleton of hystricognath rodents: evidence on their phylogenetic relationships. Mitteilungen des Museums für Naturkunde Berlin Zoologische Reihe, 75, 19–35.

    Google Scholar 

  • Miller, G. S. J., & Gidley, J. W. (1918). Synopsis of the supergeneric groups of rodents. Journal of the Washington Academy of Sciences, 8, 431–448.

    Article  Google Scholar 

  • Moore, J. C. (1959). Relationships among living squirrels of the Sciurinae. Bulletin of the American Museum of Natural History, 118(4), 153–206.

    Google Scholar 

  • Moore, J. C. (1961). The spread of existing diurnal squirrels across the Bering and Panamanian land bridges. American Museum of Natural History, 2044, 1–26.

    Google Scholar 

  • Nowak, R. (1991). Walker’s mammals of the world. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Oshida, T., Masuda, R., & Yoshida, M. C. (1996). Phylogenetic relationships among Japanese species of the family Sciuridae (Mammalia, Rodentia), inferred from nucleotide sequences of mitochondrial 12S ribosomal RNA genes. Zoological Science, 13(4), 615–620.

    Article  CAS  PubMed  Google Scholar 

  • Parent, J. P. (1980). Recherches sur l’oreille moyenne des rongeurs actuels et fossiles: anatomie, valeur systématique. Montpellier: École pratique des hautes études, Institut de Montpellier.

    Google Scholar 

  • Potapova, E. G. (2001). Morphological patterns and evolutionary pathways of the middle ear in dormice (Gliridae, Rodentia). Trakya University Journal of Scientific Research, 2(2), 159–170.

    Google Scholar 

  • Roth, V. L., & Thorington, R. W. (1982). Relative brain size among African squirrels. Journal of Mammalogy, 63(1), 168–173.

    Article  Google Scholar 

  • Saban, R. (1956). Les affinitiés du genre Tupaia Raffles 1821, d’après des caractères morphologique de la tête osseuse. Annales de Paleontologie, 42, 169–224.

    Google Scholar 

  • Samuels, J. X. (2009). Cranial morphology and dietary habitats of rodents. Zoological Journal of the Linnean Society, 156, 864–888.

    Article  Google Scholar 

  • Sarich, V. M. (1985). Rodent macromolecular systematics. In W. P. Luckett & J.-L. Hartenberger (Eds.), Evolutionary relationships among rodents: a multidisciplinary analysis. NATO ASI Series 92 (pp. 423–452). New York: Plenum Press.

    Chapter  Google Scholar 

  • Schwarz, C. (2012). Phylogenetische und funktionsmorphologische Untersuchungen der Ohrregion bei Sciuromorpha (Rodentia, Mammalia). Ph.D. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn.

  • Simpson, G. G. (1945). The principles of classification and a classification of mammals (p. 85). New York: Bulletin of the American Museum of Natural History.

    Google Scholar 

  • Stehlin, H. G., & Schaub, S. (1951). Die Trigonodontie der simplicidentaten Nager. Basel: Birkhäuser AG.

    Google Scholar 

  • Steppan, S. J., Storz, B. L., & Hoffmann, R. S. (2004). Nuclear DNA phylogeny of the squirrels (Mammalia: Rodentia) and the evolution of arboreality from c-myc and RAG1. Molecular Phylogenetics and Evolution, 30, 703–719.

    Article  CAS  PubMed  Google Scholar 

  • Thenius, E. (1989). Zähne und Gebiß der Säugetiere. New York: de Gruyter.

    Google Scholar 

  • Thorington, R. W., & Darrow, K. (2000). Anatomy of the squirrel wrist: bones, ligaments, and muscles. Journal of Morphology, 246, 85–102.

    Article  PubMed  Google Scholar 

  • Thorington, R. W., & Hoffmann, S. (2005). Family Sciuridae. In D. E. Wilson & D. M. Reeder (Eds.), Mammal species of the world, a taxonomic and geographic reference (3rd ed., pp. 754–818). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Thorington, R. W., Darrow, K., & Betts, A. D. K. (1997). Comparative myology of the forelimb of squirrels (Sciuridae). Journal of Morphology, 234, 155–182.

    Article  PubMed  Google Scholar 

  • Thorington, R. W., Pitassy, D., & Jansa, S. A. (2002). Phylogenies of flying squirrels (Pteromyinae). Journal of Mammalian Evolution, 9(1/2), 99–135.

    Article  Google Scholar 

  • Tullberg, T. (1899). Ueber das System der Nagethiere - eine phylogenetische Studie. Upsala: Akademische Buchdruckerei.

    Book  Google Scholar 

  • van der Klaauw, C. J. (1931). The auditory bulla in some fossil mammals, with a general introduction to this region of the skull. New York: The American Museum of Natural History.

    Google Scholar 

  • van Kampen, P. N. (1905). Die Tympanalgegend des Säugerschädels. Gegenbaurs Morphologisches Jahrbuch Leipzig, 34, 321–414.

    Google Scholar 

  • Vianey-Liaud, M. (1974). Palaeosciurus goti nov. sp. écureuil terrestre l’oligocène moyen du Quercy. Données nouvelles sur l’apparation des Sciuridés en Europe. Annales de Paléontologie (Vertébrés), 60(1), 103–122.

    Google Scholar 

  • Vianey-Liaud, M. (1985). Possible evolutionary relationships among eocene and lower oligocene rodents of Asia, Europe and North America. In W. P. Luckett & J.-L. Hartenberger (Eds.), Evolutionary relationships among rodents: a multidisciplinary analysis. NATO ASI Series 92 (pp. 277–310). New York: Plenum Press.

    Chapter  Google Scholar 

  • Wahlert, J. H., Sawitzke, S. L., & Holden, M. E. (1993). Cranial anatomy and relationships of dormice (Rodentia, Myoxidae). American Museum Novitates, 3061, 1–32.

    Google Scholar 

  • Webster, D. B., & Webster, M. (1975). Auditory system of Heteromyidae: functional morphology and evolution of the middle ear. Journal of Morphology, 146(3), 343–376.

    Article  CAS  PubMed  Google Scholar 

  • Wible, J. R. (2009). The ear region of the pen-tailed treeshrew, Ptilocercus lowii Gray, 1848 (Placentalia, Scadentia, Ptilocercidae). Journal of Mammalian Evolution, 16, 199–233.

    Article  Google Scholar 

  • Wible, J. R. (2011). On the treeshrew skull (Mammalia, Placentalia, Scadentia). Annals of Carnegie Museum, 79(3), 149–230.

    Article  Google Scholar 

  • Wiley, E. O., Siegel-Causey, D., Brooks, D. R., & Funk, V. A. (1991). The compleat cladist. A primer of phylogenetic procedures. Special issue 19. Lawrence: University of Kansas.

    Google Scholar 

  • Winge, H. (1888). Jordfundne og Nulevende gnavere (Rodentia) fra Lagoa Santa, Minas Geraes, Brasilia. E Museo Lundü, 1, 1–178.

    Google Scholar 

  • Wöhrmann-Repenning, A. (1982). Vergleichend-anatomische Untersuchungen an Rodentia. Phylogenetische Überlegungen über die Beziehungen der Jacobsonschen Organe zu den Ductus nasopalatini. Zoologischer Anzeiger Jena, 209, 33–46.

    Google Scholar 

  • Wu, S., Wu, W., Zhang, F., Ye, J., Ni, X., Sun, J., Edwards, S. V., Meng, J., & Organ, C. L. (2012). Molecular and paleontological evidence for a post-Cretaceous origin of rodents. PLoS ONE, 7(10), e46445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to all people who provided access to collections and material: C. Beard, A. Henrici and M. Dawson (all Carnegie Museum of Natural History, Pittsburgh); L. Costeur (Naturhistorisches Museum, Basel); R. Hutterer (Zoologisches Forschungsmuseum Alexander Koenig, Bonn); D. Kalthoff and U. Johansson (both Naturhistoriska riksmuseet, Stockholm); F. Mayer (Museum für Naturkunde, Berlin); P. Mein (Claude Bernard University, Lyon); D. Möricke (Staatliches Museum für Naturkunde, Stuttgart); K. Rauscher (Paläontologische Sammlung der Universität Wien, Wien); G. Rößner (Bayrische Staatssammlung für Paläontologie und Geologie, München); S. van der Mije (NCB Naturalis, Leiden); G. Weber and J. Rößinger (both Zoologische Schausammlung, Tübingen); and F. Zachos and A. Bibl (both Naturhistorisches Museum, Wien). Thanks to people from NCB Naturalis (Leiden), K. Hermes, and M. Scheske (both Steinmann-Institut, Bonn) for technical support. We also thank J. Kriwet (University Vienna, Vienna), M. Laumann (University of Konstanz, Germany), J. A. Schultz, and R. Schellhorn (both Steinmann-Institut, Bonn) for helpful discussions. Many thanks to two anonymous reviewers whose comments helped us to substantially improve the manuscript. This research is funded by the Fazit-Stiftung, Frankfurt (to CS) and Deutsche Forschungsgemeinschaft (DFG RU 1496/4-1 to IR).

Conflict of interest

The authors have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject of matter or matters discussed in the manuscript.

Ethical approval

An ethical approval was not required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathrin Pfaff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

μCT slices through middle and inner ear region and the respective septal compass of selected Sciuridae. A. + B. Eutamias sibiricus; C. + D. Paraxerus cepapi. E. + F. Hylopetes sagitta. Asterisk (*) indicates meshwork of bony septa. Cross (=†) refers to extinct taxa. Abbrevations: art stap – arteria stapedialis (= stapedial artery), bull aud - bulla auditiva (= auditory bulla), cc - crus commune, co – cochlea, inc – incus, LSC - lateral semicircular canal, mas – mastoid, mall – malleus, sta – stapes, pro – promontorium. (GIF 297 kb)

High-resolution image (TIFF 2951 kb)

Fig. S2

μCT slices through middle and inner ear region and the respective septal compass of selected Rodentia. A. Aplodontia rufa; B. + C. Glis glis; D. + E. Graphiurus parvus. Abbreviations see Fig. S1. (GIF 243 kb)

High-resolution image (TIFF 3051 kb)

Fig. S3

μCT slices through middle and inner ear region of selected Rodentia. A. + B. Muscardinus avellanarius; C. + D. †Palaeosciurus feignouxi; E. †Ischyromys typus. Abbreviations see Fig. S1. (GIF 327 kb)

High-resolution image (TIFF 4269 kb)

Fig. S4

μCT slices through middle and inner ear region of selected Lagomorpha. A. Ochotona alpina, B. Oryctolagus cuniculus. Abbreviations see Fig. S1. (GIF 135 kb)

High-resolution image (TIFF 2064 kb)

Table S1

(DOC 132 kb)

Table S2

(DOC 678 kb)

Table S3

(DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfaff, C., Martin, T. & Ruf, I. “Septal compass” and “septal formula”: a new method for phylogenetic investigations of the middle ear region in the squirrel-related clade (Rodentia: Mammalia). Org Divers Evol 15, 721–730 (2015). https://doi.org/10.1007/s13127-015-0222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0222-x

Keywords

Navigation