Skip to main content
Log in

Hidden diversity in the morphologically variable script lichen (Graphis scripta) complex (Ascomycota, Ostropales, Graphidaceae)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Graphis scripta, or script lichen, is a well-known species of crustose lichenized fungi, widely distributed in the temperate region of the Northern Hemisphere. It is now considered to be a species complex, but because of the lack of secondary chemistry and paucity of measurable morphological characters, species delimitation within the complex has been challenging and is thus far based on apothecium and ascospore morphology. In this study, we employed molecular as well as morphological data to assess phylogenetic structure and delimitation of lineages within the G. scripta complex. We generated sequences for four genetic markers (mtSSU, nuLSU, RPB2, and EF-1) and performed phylogenetic analyses. The resulting trees were used to determine the number of distinct lineages by applying a general mixed Yule-coalescent (GMYC) model and species tree estimation through maximum likelihood (STEM). Our analyses suggest between six and seven putative species within the G. scripta complex. However, these did not correspond to the taxa that were recently distinguished based on apothecium morphology and could not be circumscribed with the morphological characters that were traditionally used in the classification of the complex. Any formal taxonomic treatment will require additional sampling and evaluation of additional traits that potentially can characterize these clades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acharius, E. (1809). Förteckning pa de i Sverige växande arter af Lafvarnes famille. Kongliga Vetenskaps Academiens Nya Handlingar, 30, 145–169.

    Google Scholar 

  • Arup, U., & Åkelius, E. (2009). A taxonomic revision of Caloplaca herbidella and C. furfuracea. The Lichenologist, 41(5), 465–480.

    Article  Google Scholar 

  • Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22(3), 148–155.

    Article  Google Scholar 

  • Blanco, O., Crespo, A., Elix, J. A., Hawksworth, D. L., & Lumbsch, H. T. (2004). A molecular phylogeny and a new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales). Taxon, 53(4), 959–975.

    Article  Google Scholar 

  • Carstens, B. C., & Dewey, T. A. (2010). Species delimitation using a combined coalescent and information-theoretic approach: an example from North American myotis bats. Systematic Biology, 59(4), 400–414.

    Article  PubMed Central  PubMed  Google Scholar 

  • Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552.

    Article  CAS  PubMed  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation (pp. 1–545). Sinauer Associates Incorporated.

  • Cracraft, J. (1983). Species concepts and speciation analysis. In R. Johnston (Ed.), Current Ornithology (Vol. 1, pp. 159–187). Springer.

  • Crespo, A., & Lumbsch, H. T. (2010). Cryptic species in lichen-forming fungi. IMA Fungus, 1(2), 167–170.

    Article  PubMed Central  PubMed  Google Scholar 

  • Crespo, A., & Ortega, S. P. (2009). Cryptic species and species pairs in lichens: a discussion on the relationship between molecular. Anales del Jardin Botánico de Madrid, 66(1), 71–81.

    Article  Google Scholar 

  • Czarnota, P., & Guzow-Krzemińska, B. (2010). A phylogenetic study of the Micarea prasina group shows that Micarea micrococca includes three distinct lineages. The Lichenologist, 42(1), 7–21.

    Article  Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772.

    Article  CAS  PubMed  Google Scholar 

  • de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56(6), 879–886.

    Article  PubMed  Google Scholar 

  • Divakar, P. K., & Crespo, A. (2015). Molecular phylogenetic and phylogenomic approaches in studies of lichen systematics and evolution. In Recent Advances in Lichenology (pp. 45–60). New Delhi: Springer.

  • Drummond, A. J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., et al. (2014). Geneious v. 8.0.3. Biomatters.

  • Erichsen, C. F. E. (1957). Flechtenflora von Nordwestdeutschland (pp. 1–411). Stuttgart: Gustav Fischer.

    Google Scholar 

  • Ezard, T., Fujisawa, T., & Barraclough, T. G. (2009). SPLITS: SPecies’ LImits by Threshold Statistics. Retrieved from http://R-Forge.R-project.org/projects/splits/

  • Fontaneto, D., Iakovenko, N., Eyres, I., Kaya, M., Wyman, M., & Barraclough, T. G. (2011). Cryptic diversity in the genus Adineta Hudson & Gosse, 1886 (Rotifera: Bdelloidea: Adinetidae): a DNA taxonomy approach. Hydrobiologia, 662(1), 27–33.

    Article  CAS  Google Scholar 

  • Fujisawa, T., & Barraclough, T. G. (2013). Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology, 62(5), 707–724.

    Article  PubMed Central  PubMed  Google Scholar 

  • Garland, T., Jr., Dickerman, A. W., Janis, C. M., & Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Systematic Biology, 42(3), 265–292.

    Article  Google Scholar 

  • Goldstein, P. Z., DeSalle, R., Amato, G., & Vogler, A. P. (2000). Conservation genetics at the species boundary. Conservation Biology, 14(1), 120–131.

    Article  Google Scholar 

  • Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52(5), 696–704.

    Article  PubMed  Google Scholar 

  • Hodkinson, B. P., & Lendemer, J. C. (2011). Molecular analyses reveal semi-cryptic species in Xanthoparmelia tasmanica. Bibliotheca Lichenologica, 106, 108–119.

    Google Scholar 

  • Högnabba, F., & Wedin, M. (2003). Molecular phylogeny of the Sphaerophorus globosus species complex. Cladistics, 19(3), 224–232.

    Article  Google Scholar 

  • Hudson, R. R. (1990). Gene genealogies and the coalescent process. In D. J. Futuyma & J. Antonivics (Eds.), Oxford surveys in evolutionary biology (Vol. 7, pp. 1–44). Oxford: Oxford University Press.

    Google Scholar 

  • Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England), 17, 754–755.

    Article  CAS  Google Scholar 

  • Kraichak, E., Parnmen, S., Lücking, R., Rivas Plata, E., Aptroot, A., Cáceres, M. E. S., et al. (2014). Revisiting the phylogeny of Ocellularieae, the second largest tribe within Graphidaceae (lichenized Ascomycota: Ostropales). Phytotaxa, 189, 52–81.

    Article  Google Scholar 

  • Kubatko, L. S., Carstens, B. C., & Knowles, L. L. (2009). STEM: species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics (Oxford, England), 25(7), 971–973.

    Article  CAS  Google Scholar 

  • Leavitt, S. D. S., Fankhauser, J. D. J., Leavitt, D. H. D., Porter, L. D. L., Johnson, L. A. L., & Clair, L. L. L. S. (2011). Complex patterns of speciation in cosmopolitan “rock posy” lichens—discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Molecular Phylogenetics and Evolution, 59(3), 587–602.

    Article  PubMed  Google Scholar 

  • Leavitt, S. D., Moreau, C. S., & Lumbsch, H. T. (2015). The dynamic discipline of species delimitation: progress toward effectively recognizing species boundaries in natural populations. In Recent Advances in Lichenology (pp. 11–44). New Delhi: Springer.

  • Lendemer, J. C. J. (2011). A taxonomic revision of the North American species of Lepraria s.l. that produce divaricatic acid, with notes on the type species of the genus L. incana. Mycologia, 103(6), 1216–1229.

    Article  CAS  PubMed  Google Scholar 

  • Lendemer, J. C., & Hodkinson, B. P. (2013). A radical shift in the taxonomy of Lepraria s.l.: molecular and morphological studies shed new light on the evolution of asexuality and lichen growth form diversification. Mycologia, 105(4), 994–1018.

    Article  PubMed  Google Scholar 

  • Linnaeus, C. (1753). Species plantarum (pp. 1–639). Stockholm: Salvius.

    Google Scholar 

  • Lücking, R., Archer, A. W., & Aptroot, A. (2009). A world-wide key to the genus Graphis (Ostropales: Graphidaceae). The Lichenologist, 41(04), 363–452.

    Article  Google Scholar 

  • Lücking, R., Dal-Forno, M., Lawrey, J. D., Bungartz, F., Rojas, M. E. H., Hernández, J. E., et al. (2013). Ten new species of lichenized Basidiomycota in the genera Dictyonema and Cora (Agaricales: Hygrophoraceae), with a key to all accepted genera and species in the Dictyonema clade. Phytotaxa, 139(1), 1–38.

    Article  Google Scholar 

  • Lücking, R., Johnston, M. K., Aptroot, A., Kraichak, E., Lendemer, J. C., Boonpragob, K., et al. (2014). One hundred and seventy five new species of Graphidaceae: closing the gap or a drop in the bucket? Phytotaxa, 189, 7–38.

    Article  Google Scholar 

  • Lumbsch, H. T., & Leavitt, S. D. (2011). Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Diversity, 50(1), 59–72.

    Article  Google Scholar 

  • Lumbsch, H. T., Mangold, A., Martin, M. P., & Elix, J. A. (2008). Species recognition and phylogeny of Thelotrema species in Australia (Ostropales, Ascomycota). Australian Systematic Botany, 21(3), 217–227.

    Article  Google Scholar 

  • Lumbsch, H. T., Parnmen, S., Rangsiruji, A., & Elix, J. A. (2010). Phenotypic disparity and adaptive radiation in the genus Cladia (Lecanorales, Ascomycota). Australian Systematic Botany, 23(4), 239–247.

    Article  Google Scholar 

  • Lumbsch, H. T., Parnmen, S., Kraichak, E., Papong, K. B., & Lücking, R. (2014). High frequency of character transformations is phylogenetically structured within the lichenized fungal family Graphidaceae (Ascomycota: Ostropales). Systematics and Biodiversity, 12(3), 271–291.

    Article  Google Scholar 

  • Mangold, A., Martin, M. P., Lücking, R., & Lumbsch, H. T. (2008). Molecular phylogeny suggests synonymy of Thelotremataceae within Graphidaceae (Ascomycota : Ostropales). Taxon, 57, 476–486.

    Google Scholar 

  • Mayr, E. (1963). Animal species and evolution (pp. 1–797). Cambridge: Harvard University Press.

    Book  Google Scholar 

  • McCune, B., & Schoch, C. (2009). Hypogymnia minilobata (Parmeliaceae), a New Lichen from Coastal California. The Bryologist, 112(1), 94–100.

    Article  Google Scholar 

  • Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), 2010, 1–8.

  • Moncada, B., Coca, L. F., & Lücking, R. (2013). Neotropical members of Sticta (lichenized Ascomycota: Lobariaceae) forming photosymbiodemes, with the description of seven new species. The Bryologist, 116(2), 169–200.

    Article  Google Scholar 

  • Nee, S., May, R. M., & Harvey, P. H. (1994). The reconstructed evolutionary process. Philosophical Transactions: Biological Sciences, 344(1309), 305–311.

    Article  CAS  Google Scholar 

  • Neuwirth, G., & Aptroot, A. (2011). Recognition of four morphologically distinct species in the Graphis scripta complex in Europe. Herzogia, 24, 207–230.

    Article  Google Scholar 

  • Paradis, E. (2010). pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics (Oxford, England), 26, 419–420.

    Article  CAS  Google Scholar 

  • Paradis, E. (2013). Molecular dating of phylogenies by likelihood methods: a comparison of models and a new information criterion. Molecular Phylogenetics and Evolution, 67(2), 436–444. doi:10.1016/j.ympev.2013.02.008.

    Article  PubMed  Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogeneticsand evolution in R language. Bioinformatics, 20, 289–290.

    Article  CAS  PubMed  Google Scholar 

  • Parnmen, S., Rangsiruji, A., Mongkolsuk, P., Boonpragob, K., Elix, J. A., & Lumbsch, H. T. (2010). Morphological disparity in Cladoniaceae: the foliose genus Heterodea evolved from fruticose Cladia species (Lecanorales, lichenized Ascomycota). Taxon, 59(3), 841–849.

    Google Scholar 

  • Parnmen, S., Rangsiruji, A., Mongkolsuk, P., Boonpragob, K., Nutakki, A., & Lumbsch, H. T. (2012). Using phylogenetic and coalescent methods to understand the species diversity in the Cladia aggregata complex (Ascomycota, Lecanorales). PLoS ONE, 7(12), e52245.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parnmen, S., Cáceres, M. E. S., Lücking, R., & Lumbsch, H. T. (2013). Myriochapsa and Nitidochapsa, two new genera in Graphidaceae (Ascomycota: Ostropales) for chroodiscoid species in the Ocellularia clade. The Bryologist, 116(2), 127–133.

    Article  Google Scholar 

  • Pillon, Y., Hopkins, H. C. F., Rigault, F., Jaffré, T., & Stacy, E. A. (2014). Cryptic adaptive radiation in tropical forest trees in New Caledonia. New Phytologist, 202(2), 521–530.

    Article  PubMed  Google Scholar 

  • Pons, J., Barraclough, T., Gomez-Zurita, J., Cardoso, A., Duran, D., Hazell, S., et al. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55(4), 595–609.

    Article  PubMed  Google Scholar 

  • Printzen, C., & Ekman, S. (2002). Genetic variability and its geographical distribution in the widely disjunct Cavernularia hultenii. The Lichenologist, 34(2), 101–111.

    Article  Google Scholar 

  • Printzen, C., Ekman, S., & Tønsberg, T. (2003). Phylogeography of Cavernularia hultenii: evidence of slow genetic drift in a widely disjunct lichen. Molecular Ecology, 12(6), 1473–1486.

  • Rambaut, A. (2012). FigTree. Version 1.4.2.

  • Rehner, S. (2001). Primers for Elongation Factor 1-α (EF1-α). Assembling the fungal tree of life. Retrieved from http://www.aftol.org/pdfs/EF1primer.pdf

  • Revell, L. J. (2011). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.

    Article  Google Scholar 

  • Rivas Plata, E., & Lumbsch, H. T. (2011). Parallel evolution and phenotypic divergence in lichenized fungi: a case study in the lichen-forming fungal family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales). Molecular Phylogenetics and Evolution, 61(1), 45–63.

    Article  PubMed  Google Scholar 

  • Rivas Plata, E., Lücking, R., & Lumbsch, H. T. (2012). A new classification for the lichen family Graphidaceae s.lat. (Ascomycota: Lecanoromycetes: Ostropales). Fungal Diversity, 52, 107–121.

    Article  Google Scholar 

  • Rivas Plata, E., Parnmen, S., Staiger, B., Mangold, A., Frisch, A., Weerakoon, G., Hernandez, J., et al. (2013). A molecular phylogeny of Graphidaceae (Ascomycota, Lecanoromycetes, Ostropales) including 428 species. MycoKeys, 6, 55–94.

    Article  Google Scholar 

  • Ruprecht, U., Lumbsch, H. T., Brunauer, G., Green, T. A., & Türk, R. (2010). Diversity of Lecidea (Lecideaceae, Ascomycota) species revealed by molecular data and morphological characters. Antarctic Science, 22(6), 727.

    Article  Google Scholar 

  • Sanderson, M. J. (2002). Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution, 19(1), 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675.

    Article  CAS  PubMed  Google Scholar 

  • Spribille, T., Klug, B., & Mayrhofer, H. (2011). A phylogenetic analysis of the boreal lichen Mycoblastus sanguinarius (Mycoblastaceae, lichenized Ascomycota) reveals cryptic clades correlated with fatty acid profiles. Molecular Phylogenetics and Evolution, 59(3), 603–614.

    Article  CAS  PubMed  Google Scholar 

  • Staiger, B. (2002). Die Flechtenfamilie Graphidaceae. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics (Oxford, England), 22, 2688–2690.

    Article  CAS  Google Scholar 

  • Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A Rapid Bootstrap Algorithm for the RAxML Web Servers. Systematic Biology, 57, 758–771.

    Article  PubMed  Google Scholar 

  • Stenroos, S. K., & DePriest, P. T. (1998). SSU rDNA phylogeny of cladoniiform lichens. American Journal of Botany, 85(11), 1548–1559.

    Article  CAS  PubMed  Google Scholar 

  • Talavera, G., & Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564–577.

    Article  CAS  PubMed  Google Scholar 

  • Tehler, A., & Irestedt, M. (2007). Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Ascomycota). Cladistics, 23(5), 432–454.

    Article  Google Scholar 

  • Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172, 4238–4246.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vogler, A. P., & Monaghan, M. T. (2007). Recent advances in DNA taxonomy. Journal of Zoological Systematics and Evolutionary Research, 45(1), 1–10.

    Article  Google Scholar 

  • Vondrák, J. (2012). Biomonitoring, ecology, and systematics of lichens. The Bryologist, 115(4), 636–637.

    Article  Google Scholar 

  • Vondrák, J., Říha, P., Arup, U., & Søchting, U. (2009). The taxonomy of the Caloplaca citrina group (Teloschistaceae) in the Black Sea region; with contributions to the cryptic species concept in lichenology. The Lichenologist, 41(6), 571–604.

    Article  Google Scholar 

  • Wedin, M., & Döring, H. (1999). The phylogenetic relationship of the Sphaerophoraceae, Austropeltum and Neophyllis (lichenized Ascomycota) inferred by SSU rDNA sequences. Mycological Research, 103(9), 1131–1137.

    Article  CAS  Google Scholar 

  • Wedin, M., Westberg, M., Crewe, A. T., & Tehler, A. (2009). Species delimitation and evolution of metal bioaccumulation in the lichenized Acarospora smaragdula (Ascomycota, Fungi) complex. Cladistics, 25(2), 161–172.

    Article  Google Scholar 

  • Wiens, J. J., & Penkrot, T. A. (2002). Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Systematic Biology, 51(1), 69–91.

    Article  PubMed  Google Scholar 

  • Wirtz, N., Printzen, C., & Lumbsch, H. T. (2008). The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycological Research, 112, 472–484.

    Article  CAS  PubMed  Google Scholar 

  • Yost, J. M., Barry, T., Kay, K. M., & Rajakaruna, N. (2012). Edaphic adaptation maintains the coexistence of two cryptic species on serpentine soils. American Journal of Botany, 99(5), 890–897.

    Article  CAS  PubMed  Google Scholar 

  • Zahlbruckner, A. (1923). Catalogus lichenum universalis (Vol. 2, pp. 1–701). Leipzig: Gebrüder Borntraeger.

    Google Scholar 

  • Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics (Oxford, England), 29(22), 2869–2876.

    Article  CAS  Google Scholar 

  • Zoller, S., Scheidegger, C., & Sperisen, C. (1999). PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. The Lichenologist, 31, 511–516.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Kyle Huff (Roosevelt University) for helping with morphological measurements. The molecular work was performed at the Pritzker Laboratory for Molecular Systematics and Evolution at The Field Museum (Chicago).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaphan Kraichak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraichak, E., Lücking, R., Aptroot, A. et al. Hidden diversity in the morphologically variable script lichen (Graphis scripta) complex (Ascomycota, Ostropales, Graphidaceae). Org Divers Evol 15, 447–458 (2015). https://doi.org/10.1007/s13127-015-0219-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0219-5

Keywords

Navigation