Skip to main content

Advertisement

Log in

How might sea level change affect arthropod biodiversity in anchialine caves: a comparison of Remipedia and Atyidae taxa (Arthropoda: Altocrustacea)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Sea level change influences biodiversity of endemic cave fauna to varying degrees. In anchialine systems, a marine layer flows under less saline layers, each with differing associated fauna. We assess the role of present and historic (last glacial maximum – 18,000 years ago) distance from the ocean in determining species richness and phylogenetic diversity patterns for two groups of anchialine crustaceans: the marine-restricted Remipedia and a subset of groundwater-inhabiting atyid shrimp with greater tolerance for salinity variation. We calculated species richness and phylogenetic diversity per cave based on records of remipede and atyid diversity at 137 locations in the Yucatán Peninsula, Caribbean, Australia, and the Canary Islands. After calculating the distance of each cave’s surface opening from the past and present shoreline, we evaluated how species richness and phylogenetic diversity change with distance from the present and historic ocean. Remipede species richness and phylogenetic diversity declined rapidly with distance from the ocean. Ninety-five percent of the remipedes surveyed were located within 7 km of the present ocean and 18 km of the historic ocean. Atyid species richness and phylogenetic diversity declined more slowly with distance from the ocean than that of remipedes. Atyid shrimp were also distributed over a broader range: 95 % were located within 100 km of the present ocean and 240 km of the historic ocean. Our findings indicate that coastal geomorphology and salinity tolerance influence a clade’s distribution with respect to its distance from the ocean. We also report a possible latent response to sea level change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez, F., Iliffe, T. M., & Villalobos, J. L. (2005). New Species of the Genus Typhlatya (Decapoda: Atyidae) from Anchialine Caves in Mexico, the Bahamas, and Honduras. Journal of Crustacean Biology, 25, 81–94.

    Article  Google Scholar 

  • Amante, C., & Eakins, B.W. (2009). ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24.

  • Botello, A., & Alvarez, F. (2010). Genetic variation in the stygobiotic shrimp Creaseria morleyi (Decapoda: Palaemonidae), evidence of bottlenecks and re-invasions in the Yucatan Peninsula. Biological Journal of the Linnean Society, 99, 315–325.

    Article  Google Scholar 

  • Botello, A., Iliffe, T. M., Alvarez, F., Juan, C., Pons, J., & Jaume, D. (2013). Historical biogeography and phylogeny of Typhlatya cave shrimps (Decapoda: Atyidae) based on mitochondrial and nuclear data. Journal of Biogeography, 40, 594–607.

    Article  Google Scholar 

  • Brooks, H. K. (1955). A crustacean from the Tesnus Formation (Pennsylvanian) of Texas. Journal of Paleontology, 29, 852–856.

    Google Scholar 

  • Christman, M. C., & Culver, D. C. (2001). The relationship between cave biodiversity and available habitat. Journal of Biogeography, 28, 367–380.

    Article  Google Scholar 

  • Cromer, L., Gibson, J. A. E., Swadling, K. M., & Ritz, D. A. (2005). Faunal microfossils: Indicators of Holocene ecological change in a saline Antarctic lake. Palaeogeography Palaeoclimatology Palaeoecology, 221, 83–97.

    Article  Google Scholar 

  • De Grave, S., Cai, Y., & Anker, A. (2008). Global diversity of shrimps (Crustacea : Decapoda : Caridea) in freshwater. Hydrobiologia, 595, 287–293.

    Article  Google Scholar 

  • Debrot, A. O. (2003). The freshwater shrimps of Curacao, West Indies (Decapoda, Caridea). Crustaceana, 76, 65–76.

    Article  Google Scholar 

  • Denniston, R. F., Asmerom, Y., Lachniet, M., Polyak, V. J., Hope, P., An, N., et al. (2013). A Last Glacial Maximum through middle Holocene stalagmite record of coastal Western Australia climate. Quaternary Science Reviews, 77, 101–112.

    Article  Google Scholar 

  • Emerson, M. J., & Schram, F. R. (1991). Remipedia Part 2 Paleontology. Proceedings of the San Diego Society of Natural History, 7, 1–52.

    Google Scholar 

  • Erwin, R. M., Sanders, G. M., Prosser, D. J., & Cahoon, D. R. (2006). High tides and rising seas: potential effects on estuarine waterbirds. Studies in Avian Biology, 32, 214–228.

    Google Scholar 

  • Finnegan, S., Heim, N. A., Peters, S. E., & Fischer, W. W. (2012). Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences, 109, 6829–6834.

    Article  CAS  Google Scholar 

  • Fiser, C., Blejec, A., & Trontelj, P. (2012). Niche-based mechanisms operating within extreme habitats: a case study of subterranean amphipod communities. Biology Letters, 8, 578–581.

    Article  PubMed  PubMed Central  Google Scholar 

  • Galbraith, H., Jones, R., Park, R., Clough, J., Herrod-Julius, S., Harrington, B., et al. (2002). Global climate change and sea level rise: Potential losses of intertidal habitat for shorebirds. Waterbirds, 25, 173–183.

    Article  Google Scholar 

  • Hoenemann, M., Neiber, M. T., Humphreys, W. F., Iliffe, T. M., Li, D., Schram, F. R., & Koenemann, S. (2013). Phylogenetic analysis and systematic revision of Remipedia (Nectiopoda) from Bayesian analysis of molecular data. Journal of Crustacean Biology, 33, 603–619.

    Google Scholar 

  • Humphreys, W. F. (1999). Physico-chemical profile and energy fixation in Bundera Sinkhole, an anchialine remipede habitat in north-western Australia. Journal of the Royal Society of Western Australia, 82, 89–98.

    Google Scholar 

  • Hunter, R. L., Webb, M. S., Iliffe, T. M., & Bremer, J. R. A. (2008). Phylogeny and historical biogeography of the cave-adapted shrimp genus Typhlatya (Atyidae) in the Caribbean Sea and western Atlantic. Journal of Biogeography, 35, 65–75.

    Google Scholar 

  • Iliffe, T. M. (2000). Anchialine cave ecology. In H. Wilkens, D. C. Culver, & W. F. Humphreys (Eds.), Ecosystems of the World (pp. 59–76). Amsterdam: Elsevier.

    Google Scholar 

  • Iliffe, T. M., & Kornicker, L. S. (2009). Worldwide diving discoveries of living fossil animals from the depths of anchialine and marine caves. Smithsonian Contributions to the Marine Sciences, 38, 269–280.

    Google Scholar 

  • Jablonski, D. (1985). Marine regressions and mass extinctions: a test using modern biota. In J. W. Valentine (Ed.), Phanerozoic diversity patterns: profiles in macroevolution (pp. 335–354). Princeton: Princeton University.

    Google Scholar 

  • Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–638.

    Article  CAS  PubMed  Google Scholar 

  • Jaume, D., Boxshall, G. A., & Gracia, F. (2008). Stephos (Copepoda: Calanoida: Stephidae) from Balearic caves (W Mediterranean). Systematics and Biodiversity, 6, 503–552.

    Article  Google Scholar 

  • Kensley, B., & Williams, D. (1986). New Shrimps (Families Procarididae and Atyidae) from a Submerged Lava Tube on Hawaii. Journal of Crustacean Biology, 6, 417–437.

    Article  Google Scholar 

  • Koenemann, S., Schram, F. R., Hoenemann, M., & Iliffe, T. M. (2007). Phylogenetic analysis of Remipedia (Crustacea). Organisms Diversity & Evolution, 7, 33–51.

    Article  Google Scholar 

  • Legra, L., Li, X., & Peterson, A. T. (2008). Biodiversity consequences of sea level rise in New Guinea. Pacific Conservation Biology, 14, 191–199.

    Google Scholar 

  • Martin, J. W., & Wicksten, M. K. (2004). Review and redescription of the freshwater atyid shrimp genus Syncaris Holmes, 1900, in California. Journal of Crustacean Biology, 24, 447–462.

    Article  Google Scholar 

  • Mejía–Ortíz, L. M., Yánez, G., & López–Mejía, M. (2007). Echinoderms in an anchialine cave in Mexico. Marine Ecology, 28(s1), 31–34.

    Article  Google Scholar 

  • Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., et al. (2005). The Phanerozoic record of global sea-level change. Science, 310, 1293–1298.

    Article  CAS  PubMed  Google Scholar 

  • Neiber, M. T., Hartke, T. R., Stemme, T., Bergmann, A., Rust, J., Iliffe, T. M., et al. (2011). Global Biodiversity and Phylogenetic Evaluation of Remipedia (Crustacea). PLoS ONE, 6, e19627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemiller, M. L., McCandless, J. R., Reynolds, R. G., Caddle, J., Near, T. J., Tillquist, C. R., et al. (2013). Effects of climatic and geological processes during the Pleistocene on the evolutionary history of the northern cavefish, Amblyopsis spelaea (Teleostei: Amblyopsidae). Evolution, 67, 1011–1025.

    Article  PubMed  Google Scholar 

  • Page, T. J., Cook, B. D., von Rintelen, T., von Rintelen, K., & Hughes, J. M. (2008). Evolutionary relationships of atyid shrimps imply both ancient Caribbean radiations and common marine dispersals. Journal of the North American Benthological Society, 27, 68–83.

    Article  Google Scholar 

  • Pyenson, N. D., & Lindberg, D. R. (2011). What happened to gray whales during the Pleistocene? The ecological impact of sea-level change on benthic feeding areas in the North Pacific Ocean. PLoS ONE, 6(e21295), 1–14.

    Google Scholar 

  • Rahmstorf, S. (2007). A Semi-Empirical Approach to Projecting Future Sea-Level Rise. Science, 315, 368–370.

    Article  CAS  PubMed  Google Scholar 

  • Sanz, S., & Platvoet, D. (1995). New perspectives on the evolution of the genus Typhlatya (Crustacea, Decapoda): first record of a cavernicolous atyid in the Iberian Peninsula, Typhlatya miravetensis n. sp. Contributions to Zoology, 65, 79–99.

    Google Scholar 

  • Schram, F. R. (1974). Paleozoic Peracarida of North America. Fieldiana Geology, 33, 95–124.

    Google Scholar 

  • Smith, F. (2001). Historical regulation of local species richness across a geographic region. Ecology, 82, 792–801.

    Article  Google Scholar 

  • van Hengstrum, P. J., & Scott, D. B. (2012). Sea-level rise and coastal circulation controlled Holocene groundwater development in Bermuda and caused a meteoric lens to collapse 1600 years ago. Marine Mircopaleontology, 90–91, 29–43.

    Article  Google Scholar 

  • van Hengstrum, P. J., Reinhardt, E. G., Beddows, P. A., Schwarcz, H. P., & Gabriel, J. J. (2009). Foraminifera and testate amoebae (thecamoebians) in an anchialine cave: Surface distributions from Aktun Ha (Carwash) cave system, Mexico. Limnology & Oceanography, 54, 391–396.

    Article  Google Scholar 

  • Vaselli, S., Bertocci, I., Maggi, E., & Benedetti-Cecchi, L. (2008). Assessing the consequences of sea level rise: effects of changes in the slope of the substratum on sessile assemblages of rocky seashores. Marine Ecology Progress Series, 368, 9–22.

    Article  Google Scholar 

  • von Rintelen, K., Page, T. J., Cai, Y., Roe, K., Stelbrink, B., Kuhajda, B. R., et al. (2012). Drawn to the dark side: A molecular phylogeny of freshwater shrimps (Crustacea: Decapoda: Caridea: Atyidae) reveals frequent cave invasions and challenges current taxonomic hypotheses. Molecular Phylogenetics and Evolution, 63, 82–96.

    Article  Google Scholar 

  • Walker, L. N., Mylorie, J. E., Walker, A. D., & Mylorie, J. R. (2008). The caves of Abaco Island, Bahamas: keys to geologic timelines. Journal of Cave and Karst Studies, 70, 108–119.

    Google Scholar 

  • Woodroffe, C. D., & Murray-Wallace, C. V. (2012). Sea-level rise and coastal change: the past as a guide to the future. Quaternary Science Reviews, 54, 4–11.

    Article  Google Scholar 

  • Zaksek, V., Sket, B., & Trontelj, P. (2007). Phylogeny of the cave shrimp Troglocaris: Evidence of a young connection between Balkans and Caucasus. Molecular Phylogenetics and Evolution, 42, 223–235.

    Article  CAS  PubMed  Google Scholar 

  • Zaksek, V., Sket, B., Gottstein, S., Franjevic, D., & Trontelj, P. (2009). The limits of cryptic diversity in groundwater: phylogeography of the cave shrimp Troglocaris anophthalmus (Crustacea: Decapoda: Atyidae). Molecular Ecology, 18, 931–946.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MM thanks members of the “Cave Team” and Lindberg Lab for their support and feedback. We thank T. Iliffe, L. Mejía-Ortíz, and J. Yager for supplying and verifying taxon localities in the Electronic Supplementary Material, Table 3. Use of GIS software and technical assistance was provided by the University of California Berkeley Geospatial Information Facility. This is publication number 2045 from the University of California Museum of Paleontology.

Ethics Statement

All methods comply with the current laws of the USA, the country in which this research was performed.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica M. Moritsch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moritsch, M.M., Pakes, M.J. & Lindberg, D.R. How might sea level change affect arthropod biodiversity in anchialine caves: a comparison of Remipedia and Atyidae taxa (Arthropoda: Altocrustacea). Org Divers Evol 14, 225–235 (2014). https://doi.org/10.1007/s13127-014-0167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-014-0167-5

Keywords

Navigation