Skip to main content
Log in

Ferulic acid prevents methylglyoxal-induced protein glycation, DNA damage, and apoptosis in pancreatic β-cells

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Methylglyoxal (MG) can react with amino acids of proteins to induce protein glycation and consequently the formation of advanced glycation end-products (AGEs). Previous studies reported that ferulic acid (FA) prevented glucose-, fructose-, and ribose-induced protein glycation. In this study, FA (0.1–1 mM) inhibited MG-induced protein glycation and oxidative protein damage in bovine serum albumin (BSA). Furthermore, FA (0.0125–0.2 mM) protected against lysine/MG-mediated oxidative DNA damage, thereby inhibiting superoxide anion and hydroxyl radical generation during lysine and MG reaction. In addition, FA did not have the ability to trap MG. Finally, FA (0.1 mM) pretreatment attenuated MG-induced decrease in cell viability and prevented MG-induced cell apoptosis in pancreatic β-cells. The results suggest that FA is capable of protecting β-cells from MG-induced cell damage during diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adisakwattana S, Chantarasinlapin P, Thammarat H, Yibchok-Anun S (2009) A series of cinnamic acid derivatives and their inhibitory activity on intestinal α-glucosidase. J Enzyme Inhib Med Chem 24:1194–1200

    Article  CAS  PubMed  Google Scholar 

  2. Adisakwattana S, Moonsan P, Yibchok-Anun S (2008) Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo. J Agric Food Chem 56:7838–7844

    Article  CAS  PubMed  Google Scholar 

  3. Ames BN (1983) Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases Science 221:1256–1264

    CAS  PubMed  Google Scholar 

  4. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  5. Chan WH, Wu HJ (2006) Protective effects of curcumin on methylglyoxal-induced oxidative DNA damage and cell injury in human mononuclear cells. Acta Pharmacol Sin 27:1192–1198

    Article  CAS  PubMed  Google Scholar 

  6. Cook LJ, Davies J, Yates AP, Elliott AC, Lovell J, Joule JA, Pemberton P, Thornalley PJ, Best L (1998) Effects of methylglyoxal on rat pancreatic beta-cells. Biochem Pharmacol 55:1361–1367

    Article  CAS  PubMed  Google Scholar 

  7. Culbertson SM, Enright GD, Ingold KU (2003) Synthesis of a novel radical trapping and carbonyl group trapping anti-AGE agent: a pyridoxamine analogue for inhibiting advanced glycation (AGE) and lipoxidation (ALE) end products. Org Lett 5:2659–2662

    Article  CAS  PubMed  Google Scholar 

  8. Dhar A, Dhar I, Jiang B, Desai KM, Wu L (2011) Chronic methylglyoxal infusion by minipump causes pancreatic beta-cell dysfunction and induces type 2 diabetes in Sprague-Dawley rats. Diabetes 60:899–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Halliwell B, Gutteridge JM (1981) Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett 128:347–352

    Article  CAS  PubMed  Google Scholar 

  10. Huang SM, Chuang HC, Wu CH, Yen GC (2008) Cytoprotective effects of phenolic acids on methylglyoxal-induced apoptosis in Neuro-2A cells. Mol Nutr Food Res 52:940–949

    Article  CAS  PubMed  Google Scholar 

  11. Kaewnarin K, Shank L, Niamsup H, Rakariyatham N (2013) Inhibitory effects of Lamiaceae plants on the formation of advanced glycation endproducts (AGEs) in model proteins. J Med Bioeng 2:224–227

    CAS  Google Scholar 

  12. Kang JH (2003) Oxidative damage of DNA induced by methylglyoxal in vitro. Toxicol Lett 145:181–187

    Article  CAS  PubMed  Google Scholar 

  13. Kalapos MP (2013) Where does plasma methylglyoxal originate from? Diabetes Res Clin Pract 99:260–271

    Article  CAS  PubMed  Google Scholar 

  14. Kiho T, Kato M, Usui S, Hirano K (2005) Effect of buformin and metformin on formation of advanced glycation end products by methylglyoxal. Clin Chim Acta 358:139–145

    Article  CAS  PubMed  Google Scholar 

  15. Lapolla A, Flamini R, Dalla Vedova A, Senesi A, Reitano R, Fedele D, Basso E, Seraglia R, Traldi P (2003) Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin Chem Lab Med 41:1166–1173

    Article  CAS  PubMed  Google Scholar 

  16. Lee C, Yim MB, Chock PB, Yim HS, Kang SO (1998) Oxidation-reduction properties of methylglyoxal-modified protein in relation to free radical generation. J Biol Chem 273:25272–25278

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Cohenford MA, Dutta U, Dain JA (2008) The structural modification of DNA nucleosides by nonenzymatic glycation: an in vitro study based on the reactions of glyoxal and methylglyoxal with 2'-deoxyguanosine. Anal Bioanal Chem 390:679–688

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Dutta U, Cohenford MA, Dain JA (2007) Nonenzymatic glycation of guanosine 5'-triphophate by glyceraldehyde: an in vitro study of AGE formation. Bioorg Chem 35:417–429

    Article  CAS  PubMed  Google Scholar 

  19. Liu IM, Chen WC, Chemg JT (2003) Mediation of beta-endorphin by isoferulic acid to lower plasma glucose in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther 307:1196–1204

    Article  CAS  PubMed  Google Scholar 

  20. Lo CY, Hsiao WT, Chen XY (2011) Efficiency of trapping methylglyoxal by phenols and phenolic acids. J Food Sci 76:H90–H96

    Article  CAS  PubMed  Google Scholar 

  21. Lo TW, Westwood ME, McLellan AC, Selwood T, Thornalley PJ (1994) Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem 269:32299–32305

    CAS  PubMed  Google Scholar 

  22. Maruf AA, Lip H, Wong H, O’Brien PJ (2015) Protective effects of ferulic acid and related polyphenols against glyoxal- or methylglyoxal-induced cytotoxicity and oxidative stress in isolated rat hepatocytes. Chem Biol Interact 234:96–104

    Article  PubMed  Google Scholar 

  23. Mattila P, Hellström J (2007) Phenolic acids in potatoes, vegetables, and some of their products. J Food Comp Anal 20:152–160

    Article  CAS  Google Scholar 

  24. Mattila P, Hellström J, Törrönen R (2006) Phenolic acids in berries, fruits, and beverages. J Agric Food Chem 54:7193–7199

    Article  CAS  PubMed  Google Scholar 

  25. Mattila P, Pihlava JM, Hellström J (2005) Contents of phenolic acids, alkyl-and alkenylresorcinols, and avenanthramides in commercial grain products. J Agric Food Chem 53:8290–8295

    Article  CAS  PubMed  Google Scholar 

  26. Meeprom A, Sompong W, Suantawee T, Thilavech T, Chan CB, Adisakwattana S (2015) Isoferulic acid prevents methylglyoxal-induced protein glycation and DNA damage by free radical scavenging activity. BMC Complement Altern Med 15:346

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ni Z, Zhuge Z, Li W, Xu H, Zhang Z, Dai H (2012) Inhibitory effects of hydroxysafflor yellow A on the formation of advanced glycation end products in vitro. Biol Pharm Bull 35:2050–2053

  28. Okouchi M, Okayama N, Aw TY (2009) Preservation of cellular glutathione status and mitochondrial membrane potential by N-acetylcysteine and insulin sensitizers prevents carbonyl stress-induced human brain endothelial cell apoptosis. Curr Neurovasc Res 6:267–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peng X, Ma J, Chen F, Wang M (2011) Naturally occurring inhibitors against the formation of advanced glycation end-products. Food Funct 2:289–301

    Article  CAS  PubMed  Google Scholar 

  30. Pun PB, Logan A, Darley-Usmar V, Chacko B, Johnson MS, Huang GW, Rogatti S, Prime TA, Methner C, Krieg T, Fearnley IM, Larsen L, Larsen DS, Menger KE, Collins Y, James AM, Kumar GD, Hartley RC, Smith RA, Murphy MP (2014) A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes. Free Radic Biol Med 67:437–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rabbani N, Thornalley PJ (2015) Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun 458:221–226

    Article  CAS  PubMed  Google Scholar 

  32. Riboulet-Chavey A, Pierron A, Durand I, Murdaca J, Giudicelli J, Van Obberghen E (2006) Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. Diabetes 55:1289–1299

    Article  CAS  PubMed  Google Scholar 

  33. Sakai S, Kawamata H, Kogure T, Mantani N, Terasawa K, Umatake M, Ochiai H (1998) Inhibitory effect of ferulic acid and isoferulic acid on the production of macrophage inflammatory protein-2 in response to respiratory syncytial virus infection in RAW264.7 cells. Mediat Inflamm 8:173–175

    Article  Google Scholar 

  34. Seo K, Ki SH, Shin SM (2014) Methylglyoxal induces mitochondrial dysfunction and cell death in liver. Toxicol Res 30:193–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheader EA, Benson RS, Best L (2001) Cytotoxic action of methylglyoxal on insulin-secreting cells. Biochem Pharmacol 61:1381–1386

    Article  CAS  PubMed  Google Scholar 

  36. Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 18:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sompong W, Cheng H, Adisakwattana S (2015) Protective effects of ferulic acid on high glucose-induced protein glycation, lipid peroxidation, and membrane ion pump activity in human erythrocytes. 10: e0129495

  38. Sompong W, Meeprom A, Cheng H, Adisakwattana S (2013) A comparative study of ferulic acid on different monosaccharide-mediated protein glycation and oxidative damage in bovine serum albumin. Molecules 18:13886–13903

    Article  CAS  PubMed  Google Scholar 

  39. Sook Kim Y, Soo Lee I, Sook Kim J (2014) Protective effects of Puerariae radix extract and its single compounds on methylglyoxal-induced apoptosis in human retinal pigment epithelial cells. J Ethnopharmacol 152:594–598

    Article  CAS  PubMed  Google Scholar 

  40. Thornalley PJ (1994) Methylglyoxal, glyoxalases and the development of diabetic complications. Amino Acids 6:15–23

    Article  CAS  PubMed  Google Scholar 

  41. Uchida K, Kanematsu M, Sakai K, Matsuda T, Hattori N, Mizuno Y, Suzuki D, Miyata T, Noguchi N, Niki E, Osawa T (1998) Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci U S A 95:4882–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vander Jagt DL (2008) Methylglyoxal, diabetes mellitus and diabetic complications. Drug Metabol Drug Interact 23:93–124

    CAS  PubMed  Google Scholar 

  43. Wu HJ, Chan WH (2007) Genistein protects methylglyoxal-induced oxidative DNA damage and cell injury in human mononuclear cells. Toxicol in Vitro 21:335–342

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank a Ph.D. Scholarship under the Chula Dusadee Pipat project, Chulalongkorn University. This research was supported by the National Research University Project, Office of Higher Education Commission (WCU009-HR57) and Grant for International Research Integration: Chula Research Scholar, Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University. Weerachat Sompong would like to thank Ratchadaphiseksomphot Fund for Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirichai Adisakwattana.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sompong, W., Cheng, H. & Adisakwattana, S. Ferulic acid prevents methylglyoxal-induced protein glycation, DNA damage, and apoptosis in pancreatic β-cells. J Physiol Biochem 73, 121–131 (2017). https://doi.org/10.1007/s13105-016-0531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0531-3

Keywords

Navigation