Skip to main content
Log in

Effects of improved fat meat products consumption on emergent cardiovascular disease markers of male volunteers at cardiovascular risk

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

High meat-product consumption has been related to cardiovascular disease (CVD). However, previous results suggest the benefits of consuming improved fat meat products on lipoprotein-cholesterol and anthropometric measurements. Present study aims to assess the effect of consuming different Pâté and Frankfurter formulations on emergent CVD biomarkers in male volunteers at increased CVD risk. Eighteen male volunteers with at least two CVD risk factors were enrolled in a sequentially controlled study where different pork-products were tested: reduced-fat (RF), omega-3-enriched-RF (n-3RF), and normal-fat (NF). Pork-products were consumed during 4-week periods separated by 4-week washout. The cardiometabolic index (CI), oxidized low density lipoproteins (oxLDL), apolipoproteins (Apo) A1 and B, homocysteine (tHcys), arylesterase (AE), C-reactive Protein (CRP), tumor necrotic factor-alpha (TNFα), and lipoprotein (a) (Lp(a)) were tested and some other related ratios calculated. AE, oxLDL and Lp(a), AE/HDLc, LDLc/Apo B, and AE/oxLDL rate of change were differently affected (P<0.01) by pork-products consumption. RF increased (P < 0.05) AE, AE/HDLc and AE/oxLDL ratios and decreased TNFα, tHcys; n-3RF increased (P < 0.001) AE, AE/HDLc and AE/oxLDL ratios and decreased (P < 0.05) Lp(a); while NF increased (P<0.05) oxLDL and Lp(a) levels. In conclusion, RF and n-3RF products affected positively the level of some emergent CVD markers. The high regular consumption of NF-products should be limited as significantly increased Lp(a) and oxLDL values. The high variability in response observed for some markers suggests the need to perform more studies to identify targets for RF- and n-3RF-products.

Emergent CVD markers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abbreviations

AE:

Arylesterase

Apo A1:

Apolipoprotein A1

Apo B:

Apolipoprotein B

CI:

Cardiometabolic index

CRP:

C-reactive protein

HDLc:

Cholesterol transported by high density lipoproteins

LDLc:

Cholesterol transported by low density lipoproteins

Lp(a):

Lipoprotein(a)

oxLDL:

Oxidized LDL

TG:

Triglycerides

TG/HDLc:

Triglyceride/cholesterol transported by high density lipoproteins ratio

tHcys:

Homocysteine

TNFα:

Tumor necrotic factor-alpha

W/H:

Waist circumference/Height ratio

References

  1. Aasvee K, Kurvinen E, Jordania R, Jauhiainen M, Sundvall J (2004) Lipoprotein parameters in relation to other risk factors of atherosclerosis in adults and newborns: Tallinn Young Family Study. Scand J Clin Lab Invest 64:245–253

    Article  CAS  PubMed  Google Scholar 

  2. AESAN ENIDE (2011) Encuesta Nacional de Ingesta Dietética (2009–2010). Evaluación nutricional de la dieta española. I. Energía y macronutrientes http://aesan.msssi.gob.es/AESAN/web/notas_prensa/presentacion_enide.shtml

  3. Assmann G, Schulte H, von Eckardstein A, Huang Y (1996) High density lipoprotein cholesterol as a predictor of coronary heart disease risk: the PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis 124:S11–S20

    Article  CAS  PubMed  Google Scholar 

  4. Assmann G, Schulte H, Von Eckardstein A (1996) Hypertriglyceridemia and elevated lipoprotein (a) are risk factors for major coronary events in middle-aged men. Am J Cardiol 77:1179–1184

    Article  CAS  PubMed  Google Scholar 

  5. Aviram M (2004) Introduction to the serial review on paraoxonases, oxidative stress, and cardiovascular diseases. Free Radic Biol Med 37:1301–1303

    Article  CAS  PubMed  Google Scholar 

  6. Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL, LaDun BN (1998) Paraoxonase inhibits high density lipoproteins (HDL) oxidation and preserves its functions, a possible peroxidative role for paraoxonase. J Clin Invest 101:1581–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bastida S, Perea S, Sánchez-Muniz FJ (1998) Do neonates with high serum cholesterol levels have a different high density lipoprotein composition? Eur J Pediatr 157:66–70

    Article  CAS  PubMed  Google Scholar 

  8. Berglund L, Lefevre M, Ginsberg HN, Kris-Etherton PM, Elmer PJ, Stewart PW et al (2007) Comparison of monounsaturated fat with carbohydrates as a replacement for saturated fat in subjects with a high metabolic risk profile: studies in the fasting and postprandial states. Am J Clin Nutr 86:1611–1620

    CAS  PubMed  Google Scholar 

  9. Boizel R, Benhamou PY, Lardy B, Laporte F, Foulon T, Halimi S (2000) Ratio of triglycerides to HDL cholesterol is an indicator of LDL particle size in patients with type 2 diabetes and normal HDL cholesterol levels. Diabetes Care 23:1679–1685

    Article  CAS  PubMed  Google Scholar 

  10. Canales A, Bastida S, Librelottto J, Nus M, Sánchez-Muniz FJ, Benedi J (2009) Platelet aggregation, eicosanoid production and thrombogenic ratio in individuals at high cardiovascular risk consuming meat enriched in walnut paste. A crossover, placebo-controlled study. Br J Nutr 102(1):134–41

    Article  CAS  PubMed  Google Scholar 

  11. Canales A, Sánchez-Muniz FJ (2003) Paraoxonasa, ¿algo más que una enzima? Med Clin (Barc) 121:537–548

    Article  Google Scholar 

  12. Carmena R (2010) Dyslipidemia. In: Serrano-Ríos G-F (ed) Type 2 Diabetes Mellitus. Elsevier, Amsterdam, pp 219–230

    Google Scholar 

  13. Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB (1986) Incidence of coronary heart disease and lipoprotein cholesterol levels: the Framingham study. JAMA 256:2835–2838

    Article  CAS  PubMed  Google Scholar 

  14. Celada P, Bastida S, Sánchez-Muniz FJ (2016) To eat or not to eat meat. That is the question. Nutr Hosp 33:177–181

    Article  Google Scholar 

  15. Celada P, Delgado-Pando G, Olmedilla-Alonso B, Jiménez-Colmenero F, Ruperto M, Sánchez-Muniz FJ (2015) Impact of improved fat-meat products consumption on anthropometric markers and nutrient intakes of male volunteers at increased cardiovascular risk. Nutr Hosp 32:710–721

    PubMed  Google Scholar 

  16. Celada P, Sánchez-Muniz FJ (2016) Are meat and meat product consumptions harmful? Their relationship with the risk of colorectal cancer and other degenerative diseases. An Real Acad Farm 82(1):68–90

    Google Scholar 

  17. Delgado-Pando G, Celada P, Sánchez-Muniz FJ, Jiménez-Colmenero F, Olmedilla-Alonso B (2014) Effects of improved fat content of frankfurters and pâtés on lipid and lipoprotein profile of volunteers at increased cardiovascular risk: a placebo-controlled study. Eur J Nutr 53:83–93

    Article  CAS  PubMed  Google Scholar 

  18. Delgado-Pando G, Cofrades S, Rodríguez-Salas L, Jiménez-Colmenero F (2011) A healthier oil combination and konjac gel as functional ingredients in low-fat pork liver pâté. Meat Sci 88:241–248

    Article  CAS  PubMed  Google Scholar 

  19. Delgado-Pando G, Cofrades S, Ruiz-Capillas C, Jiménez-Colmenero F (2010) Healthier lipid combination as functional ingredient influencing sensory and technological properties of low-fat frankfurters. Eur J Lipid Sci Technol 112:859–870

    Article  CAS  Google Scholar 

  20. Gammon CS, Kruger R, Conlon CA, von Hurst PR, Jones B, Stonehouse W (2014) Inflammatory status modulates plasma lipid and inflammatory marker responses to kiwifruit consumption in hypercholesterolaemic men. Nutr Metab Cardiovasc Dis 24:91–99

  21. Ganji V, Kafai MR (2003) Demographic, health, lifestyle, and blood vitamin determinants of serum total homocysteine concentrations in the third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr 77:826–833

    CAS  PubMed  Google Scholar 

  22. Gómez Gerique JA (2008) Avances en la prevención de enfermedades cardiovasculares. Nuevos marcadores bioquímicos. In: Vaquero MP (ed) Genética, nutrición y enfermedad. Instituto Tomás Pascual Sanz y Consejo Superior de Investigaciones Científicas, Madrid, pp 79–102

    Google Scholar 

  23. Hafiane A, Genest J (2015) High density lipoproteins: measurement techniques and potential biomarkers of cardiovascular risk. BBA Clin 3:175–188

    Article  PubMed  PubMed Central  Google Scholar 

  24. Haring B, von Ballmoos MC, Appel LJ, Sacks FM (2014) Healthy dietary interventions and lipoprotein (a) plasma levels: results from the Omni Heart Trial. PLoS One 9(12):e114859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ (2008) Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis 197:12–24

    Article  CAS  PubMed  Google Scholar 

  26. Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R (2016) Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 167:228–256

    Article  CAS  PubMed  Google Scholar 

  27. Kurt B, Soufi M, Sattler A, Schaefer JR (2015) The only established Lp(a) lowering treatment is the use of nicotinic acid, fibrates or performing LDL/Lp(a) apheresis Lipoprotein(a)-clinical aspects and future challenges. Clin Res Cardiol Suppl 10:26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lamarche B, Couture P (2015) Dietary fatty acids, dietary patterns, and lipoprotein metabolism. Curr Opin Lipidol 26:42–47

    Article  CAS  PubMed  Google Scholar 

  29. Luc G, Bard JM, Arveiler D, Ferrieres J, Evans A, Amouyel P (2002) Lipoprotein (a) as a predictor of coronary heart disease: the PRIME Study. Atherosclerosis 163:377–384

    Article  CAS  PubMed  Google Scholar 

  30. Navas-Carretero S, Cuervo M, Abete I, Zulet MA, Martínez JA (2011) Frequent consumption of selenium-enriched chicken meat by adults causes weight loss and maintains their antioxidant status. Biol Trace Elem Res 143(1):8–19

    Article  CAS  PubMed  Google Scholar 

  31. Navas-Carretero S, San-Cristobal R, Avellaneda A, Planes J, Zulet MA, Martínez JA (2015) Benefits on body fat composition of isocalorically controlled diets including functionally optimized meat products: Role of alpha-linolenic acid. J Funct Foods 12:319–31

    Article  CAS  Google Scholar 

  32. Nave AH, Lange KS, Leonards CO, Siegerink B, Doehner W, Landmesser U et al (2015) Lipoprotein (a) as a risk factor for ischemic stroke: a meta-analysis. Atherosclerosis 242:496–503

    Article  CAS  PubMed  Google Scholar 

  33. Nus M, Frances F, Librelotto J, Canales A, Corella D, Sánchez-Montero JM et al (2007) Arylesterase activity and antioxidant status depend on PON1-Q192R and PON1-L55M polymorphisms in subjects with increased risk of cardiovascular disease consuming walnut-enriched meat. J Nutr 137:1783–1788

    CAS  PubMed  Google Scholar 

  34. Nus M, Sánchez-Muniz FJ, Sánchez-Montero JM (2006) A new method for the determination of arylesterase activity in human serum using simulated body fluid. Atherosclerosis 188:155–159

    Article  CAS  PubMed  Google Scholar 

  35. Ross R (1999) Atherosclerosis an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  36. Rothenbacher D, Brenner H, März W, Koenig W (2005) Adiponectin, risk of coronary heart disease and correlations with cardiovascular risk markers. Eur Heart J 26:1640–1646

    Article  CAS  PubMed  Google Scholar 

  37. Sánchez-Muniz FJ, Canales A, Nus M, Bastida S, Guillén M, Corella D, Olmedilla-Alonso B, Granado-Lorencio F, Benedí J (2012) The antioxidant status response to low-fat and walnut paste-enriched meat differs in volunteers at high cardiovascular Risk carrying different PON-1 polymorphisms. J Am Coll Nutr 31(3):194–205

    Article  PubMed  Google Scholar 

  38. Sengwayo D, Moraba M, Motaung S (2013) Association of homocysteinaemia with hyperglycaemia, dyslipidaemia, hypertension and obesity. Cardiovasc J Afr 24:265–269

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shin MJ, Blanche PJ, Rawlings RS, Fernstrom HS, Krauss RM (2007) Increased plasma concentrations of lipoprotein(a) during a low-fat, high-carbohydrate diet are associated with increased plasma concentrations of apolipoprotein C-III bound to apolipoprotein B-containing lipoproteins. Am J Clin Nutr 85:1527–1532

    CAS  PubMed  Google Scholar 

  40. Skulas-Ray AC, Alaupovic P, Kris-Etherton PM, West SG (2015) Dose–response effects of marine omega-3 fatty acids on apolipoproteins, apolipoprotein-defined lipoprotein subclasses, and Lp-PLA2 in individuals with moderate hypertriglyceridemia. J Clin Lipidol 9:360–367

    Article  PubMed  Google Scholar 

  41. The Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288:2015–2022

    Article  Google Scholar 

  42. Trpkovic A, Resanovic I, Stanimirovic J, Radak D, Mousa SA, Cenic-Milosevic D et al (2015) Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit Rev Clin Lab Sci 52:70–85

    Article  CAS  PubMed  Google Scholar 

  43. Vázquez-Velasco M, Esperanza Díaz L, Lucas R, Gómez-Martínez S, Bastida S, Marcos A, Sánchez-Muniz FJ (2011) Effects of hydroxytyrosol-enriched sunflower oil consumption on CVD risk factors. Br J Nutr 105:1448–1452, Erratum in Br J Nutr (2011) 105:1712

    Article  CAS  PubMed  Google Scholar 

  44. Wakabayashi I, Daimon T (2015) The “cardiometabolic index” as a new marker determined by adiposity and blood lipids for discrimination of diabetes mellitus. Clin Chim Acta 438:274–278

    Article  CAS  PubMed  Google Scholar 

  45. WHO (2009) Global health risks: mortality and burden of disease attributable to selected major risks. World Health Organization, Geneve (Switzerland)

    Google Scholar 

  46. Zacho J, Tybaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG (2008) Genetically elevated C-reactive protein and ischemic vascular disease. N Engl J Med 359:1897–1908

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the projects Consolider-Ingenio 2010: CARNISENUSA (CSD2007-00016), Ministerio de Ciencia y Tecnología (Spain), and AGL 2011-29644-C02-01 of the Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Ministerio de Economía y Competitividad (Spain). We acknowledge volunteers participation and the statistical study assessment of Dra Laura Barrios from the Subdirección General de Apoyo a la Investigación (SGAI) of CSIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J Sánchez-Muniz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celada, P., Sánchez-Muniz, F.J., Delgado-Pando, G. et al. Effects of improved fat meat products consumption on emergent cardiovascular disease markers of male volunteers at cardiovascular risk. J Physiol Biochem 72, 669–678 (2016). https://doi.org/10.1007/s13105-016-0505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0505-5

Keywords

Navigation