Skip to main content

Advertisement

Log in

Secoisolariciresinol diglucoside in high-fat diet and streptozotocin-induced diabetic nephropathy in rats: a possible renoprotective effect

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Due to substantial morbidity and high complication rate of diabetes mellitus, which is considered as the third killer in the world, a search for the effective blockade of the progression of diabetic nephropathy (DN) remains a therapeutic challenge. Alternative antidiabetic drugs from natural plants are highly demanded nowadays. The aim of this study was to investigate the renoprotective effect of secoisolariciresinol diglucoside (SDG) on DN induced in rats. Diabetes was induced in male Sprague-Dawley rats by a high-fat diet (HFD) and an intraperitoneal 35 mg/kg streptozotocin (STZ) injection. Rats were divided into four groups: normal control rats, diabetic control rats, diabetic rats treated with SDG at 10 mg/kg/day for 4 weeks, and diabetic rats treated with SDG at 20 mg/kg/day for 4 weeks. At the end of the treatment, blood and renal tissue samples were collected for biochemical examination. The results revealed that SDG treatment significantly increased insulin level and decreased blood glucose, fructosamine, creatinine, and blood urea nitrogen levels in diabetic rats. Also, SDG significantly increased renal reduced glutathione, superoxide dismutase and decreased malondialdehyde and nitric oxide levels. In addition, SDG downregulated the renal nuclear factor kappa-B (NF-κB), tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) and upregulated renal survivin and B-cell lymphoma-2 (Bcl-2) expressions when compared with untreated diabetic control rats. This study demonstrated, for the first time, the renoprotective effects of SDG in HFD/STZ-induced DN in rats through correction of hyperglycemia; attenuation of oxidative/nitrosative stress markers; downregulation of renal expressions of inflammatory markers NF-κB, TNF-α, and iNOS; along with upregulation of renal expressions of antiapoptotic markers survivin and Bcl-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adolphe JL, Whiting SJ, Juurlink BH, Thorpe LU, Alcorn J (2010) Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br J Nutr 103:929

    Article  CAS  PubMed  Google Scholar 

  2. Ahad A, Ganai AA, Mujeeb M, Siddiqui WA (2014) Ellagic acid, an NF-kappaB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact 219C:64–75

    Article  PubMed  Google Scholar 

  3. Aktuğ H, Çetintaş VB, Kosova B, Oltulu F, Demiray ŞB, Çavuşoğlu T, Akarca SÖ, Yavaşoğlu A (2012) Dysregulation of nitric oxide synthase activity and Bcl-2 and caspase-3 gene expressions in renal tissue of streptozotocin-induced diabetic rats. Turk J Med Sci 42:830–838

    Google Scholar 

  4. Al-Aboudi A, Afifi FU (2011) Plants used for the treatment of diabetes in Jordan: a review of scientific evidence. Pharm Biol 49:221–239

    Article  PubMed  Google Scholar 

  5. Anjaneyulu M, Chopra K (2004) Effect of irbesartan on the antioxidant defence system and nitric oxide release in diabetic rat kidney. Am J Nephrol 24:488–496

    Article  CAS  PubMed  Google Scholar 

  6. Aragno M, Mastrocola R, Catalano MG, Brignardello E, Danni O, Boccuzzi G (2004) Oxidative stress impairs skeletal muscle repair in diabetic rats. Diabetes 53:1082–1088

    Article  CAS  PubMed  Google Scholar 

  7. Association AD (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33:S62–S69

    Article  Google Scholar 

  8. Aziz MTA, Wassef MAA, Ahmed HH, Rashed L, Mahfouz S, Aly MI, Hussein RE, Abdelaziz M (2014) The role of bone marrow derived-mesenchymal stem cells in attenuation of kidney function in rats with diabetic nephropathy. Diabetol Metab Syndr 6:34

    Article  PubMed Central  PubMed  Google Scholar 

  9. Barre D, Mizier-Barre K, Stelmach E, Hobson J, Griscti O, Rudiuk A, Muthuthevar D (2012) Flaxseed lignan complex administration in older human Type 2 diabetics manages central obesity and prothrombosis—an invitation to further investigation into polypharmacy reduction. J Nutr Metab 2012

  10. Chaudhari HS, Bhandari U, Khanna G (2013) Embelia ribes extract reduces high fat diet and low dose streptozotocin-induced diabetic nephrotoxicity in rats. Excli J 12:858–871

    Google Scholar 

  11. Duncan AM, Phipps WR, Kurzer MS (2003) Phyto-oestrogens. Best Pract Res Clin Endocrinol Metab 17:253–271

    Article  CAS  PubMed  Google Scholar 

  12. Fornoni A, Ijaz A, Tejada T, Lenz O (2008) Role of inflammation in diabetic nephropathy. Curr Diabetes Rev 4:10–17

    Article  CAS  PubMed  Google Scholar 

  13. Guijarro C, Egido J (2001) Transcription factor-kappa B (NF-kappa B) and renal disease. Kidney Int 59:415–424

    Article  CAS  PubMed  Google Scholar 

  14. Guo C, Han F, Zhang C, Xiao W, Yang Z (2014) Protective effects of oxymatrine on experimental diabetic nephropathy. Planta Med 80:269–276

    Article  CAS  PubMed  Google Scholar 

  15. Guo C, Zhang C, Li L, Wang Z, Xiao W, Yang Z (2014) Hypoglycemic and hypolipidemic effects of oxymatrine in high-fat diet and streptozotocin-induced diabetic rats. Phytomedicine 15:807–8014

    Article  Google Scholar 

  16. Jang JH, Surh YJ (2003) Potentiation of cellular antioxidant capacity by Bcl-2: implications for its antiapoptotic function. Biochem Pharmacol 66:1371–1379

    Article  CAS  PubMed  Google Scholar 

  17. Kelly KJ, Zhang J, Han L, Wang M, Zhang S, Dominguez JH (2013) Intravenous renal cell transplantation with SAA1-positive cells prevents the progression of chronic renal failure in rats with ischemic-diabetic nephropathy. Am J Physiol Renal Physiol 305:F1804–F1812

    Article  CAS  PubMed  Google Scholar 

  18. Knight SF, Imig JD (2007) Obesity, insulin resistance, and renal function. Microcirculation 14:349–362

    Article  CAS  PubMed  Google Scholar 

  19. Ko GJ, Kang YS, Han SY, Lee MH, Song HK, Han KH, Kim HK, Han JY, Cha DR (2008) Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Nephrol Dial Transplant 23:2750–2760

    Article  CAS  PubMed  Google Scholar 

  20. Kuhad A, Chopra K (2009) Attenuation of diabetic nephropathy by tocotrienol: involvement of NFkB signaling pathway. Life Sci 84:296–301

    Article  CAS  PubMed  Google Scholar 

  21. Lechler P, Wu X, Bernhardt W, Campean V, Gastiger S, Hackenbeck T, Klanke B, Weidemann A, Warnecke C, Amann K (2007) The tumor gene survivin is highly expressed in adult renal tubular cells: implications for a pathophysiological role in the kidney. Amer J Pathol 171:1483–1498

    Article  CAS  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  23. Mani UV, Mani I, Biswas M, Kumar SN (2011) An open-label study on the effect of flax seed powder (Linum usitatissimum) supplementation in the management of diabetes mellitus. J Diet Suppl 8:257–265

    Article  CAS  PubMed  Google Scholar 

  24. Maritim A, Sanders R, Watkins JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38

    Article  CAS  PubMed  Google Scholar 

  25. Montgomery HAC, Dymock JF (1961) The determination of nitrite in water. Analyst 86:414–416

    CAS  Google Scholar 

  26. Moree SS, Rajesha J (2011) Secoisolariciresinol diglucoside—a phytoestrogen nutraceutical of flaxseed: synthesis and evaluation of antioxidant potency. Free Radicals Antioxid 1:31–38

    Article  CAS  Google Scholar 

  27. Moree SS, Kavishankar G, Rajesha J (2013) Antidiabetic effect of secoisolariciresinol diglucoside in streptozotocin-induced diabetic rats. Phytomedicine 20:237–245

    Article  CAS  PubMed  Google Scholar 

  28. Prabhakar PK, Prasad R, Ali S, Doble M (2013) Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine 20:488–494

    Article  CAS  PubMed  Google Scholar 

  29. Prasad K (2002) Suppression of phosphoenolpyruvate carboxykinase gene expression by secoisolariciresinol diglucoside (SDG), a new antidiabetic agent. Inter J Angiol 11:107–109

    Article  CAS  Google Scholar 

  30. Prasad K (2013) Secoisolariciresinol diglucoside (SDG) isolated from flaxseed, an alternative to ACE inhibitors in the treatment of hypertension. Int J Angiol 22:235–238

    Article  PubMed  Google Scholar 

  31. Rajesha J, Murthy KNC, Kumar MK, Madhusudhan B, Ravishankar GA (2006) Antioxidant potentials of flaxseed by in vivo model. J Agric Food Chem 54:3794–3799

    Article  CAS  PubMed  Google Scholar 

  32. Rajesha J, Harish N, Basavaraj M, Shylaja M, Karuna K, Ravishankar G (2008) Antioxidant potential of secoisolariciresinol diglucoside isolated from different fractions of flaxseeds. Seed Sci Biotech 2:83–88

    Google Scholar 

  33. Reed M, Meszaros K, Entes L, Claypool M, Pinkett J, Gadbois T, Reaven G (2000) A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 49:1390–1394

    Article  CAS  PubMed  Google Scholar 

  34. Salimifar M, Fatehi-Hassanabad Z, Fatehi M (2013) A review on natural products for controlling type 2 diabetes with an emphasis on their mechanisms of actions. Curr Diabetes Rev 9:402–411

    Article  CAS  PubMed  Google Scholar 

  35. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3:401–410

    Article  CAS  PubMed  Google Scholar 

  36. Schmid H, Boucherot A, Yasuda Y, Henger A, Brunner B, Eichinger F, Nitsche A, Kiss E, Bleich M, Gröne HJ (2006) Modular activation of nuclear factor-κB transcriptional programs in human diabetic nephropathy. Diabetes 55:2993–3003

    Article  CAS  PubMed  Google Scholar 

  37. Selcuk MY, Aygen B, Dogukan A, Tuzcu Z, Akdemir F, Komorowski JR, Atalay M, Sahin K (2012) Chromium picolinate and chromium histidinate protects against renal dysfunction by modulation of NF-B pathway in high-fat diet fed and Streptozotocin-induced diabetic rats. Nutr Metab 9:30–36

    Article  CAS  Google Scholar 

  38. Sharma S, Kulkarni SK, Chopra K (2006) Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 33:940–945

    Article  CAS  PubMed  Google Scholar 

  39. Si X, Li P, Zhang Y, Lv W, Qi D (2014) Renoprotective effects of olmesartan medoxomil on diabetic nephropathy in streptozotocin-induced diabetes in rats. Biomed Rep 2:24–28

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Song Q, An X, Li D, Sodha NR, Boodhwani M, Tian Y, Sellke FW, Li J (2009) Hyperglycemia attenuates angiogenic capability of survivin in endothelial cells. Microvas Res 78:257–264

    Article  CAS  Google Scholar 

  41. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320

    Article  CAS  PubMed  Google Scholar 

  42. Staels B, Fruchart JC (2005) Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 54:2460–2470

    Article  CAS  PubMed  Google Scholar 

  43. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:537–546

    CAS  PubMed  Google Scholar 

  44. Tavafi M (2013) Diabetic nephropathy and antioxidants. J nephropathol 2:20–27

    Article  PubMed Central  PubMed  Google Scholar 

  45. Wiwanitkit V (2006) Formation of fructosamine in diabetic patients—what are implications in terms of energy exchange. Diabetol Croat 2:35–37

    Google Scholar 

  46. Wu Y, Ouyang JP, Wu K, Wang SS, Wen CY, Xia ZY (2005) Rosiglitazone ameliorates abnormal expression and activity of protein tyrosine phosphatase 1B in the skeletal muscle of fat‐fed, streptozotocin‐treated diabetic rats. Br J Pharmacol 146:234–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Xie W, Du L (2011) Diabetes is an inflammatory disease: evidence from traditional Chinese medicines. Diabetes Obes Metab 13:289–301

    Article  CAS  PubMed  Google Scholar 

  48. Yamabe N, Yokozawa T, Oya T, Kim M (2006) Therapeutic potential of (−)-epigallocatechin 3-O-gallate on renal damage in diabetic nephropathy model rats. J Pharmacol Exp Ther 319:228–236

    Article  CAS  PubMed  Google Scholar 

  49. Zhang T, Gao J, Jin ZY, Xu XM, Chen HQ (2014) Protective effects of polysaccharides from Lilium lancifolium on streptozotocin-induced diabetic mice. Int J Biol Macromol 65:436–440

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Declaration of interest

The author declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman O. Sherif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherif, I.O. Secoisolariciresinol diglucoside in high-fat diet and streptozotocin-induced diabetic nephropathy in rats: a possible renoprotective effect. J Physiol Biochem 70, 961–969 (2014). https://doi.org/10.1007/s13105-014-0364-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-014-0364-x

Keywords

Navigation