Skip to main content
Log in

Effects of dietary sea cucumber saponin on the gene expression rhythm involved in circadian clock and lipid metabolism in mice during nighttime-feeding

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In mammals, clock rhythms exist not only in the suprachiasmatic nucleus, which is entrained by light/dark (LD) cycles, but also in most peripheral tissues. Recent studies have revealed that most physiology and behavior are subject to well-controlled daily oscillations; similarly, metabolic state influences the diurnal rhythm too. Previous studies have indicated that dietary sea cucumber saponin (SCS) could improve glucose and lipid metabolism of rodent. However, whether SCS could affect the expression of clock genes, which is involved in lipid metabolism, is unknown at present. The aim of this study is to investigate the effects of SCS on the clock and clock-controlled genes involved in lipid metabolism. ICR male mice were divided into a control and SCS group mice (add 0.03 % sea cucumber saponin to regular chow) and were fed at night (2030–0830 hours). After 2 weeks, clock genes expression in brain and liver, blood glucose, hormones, and lipid metabolic markers were analyzed. The results showed that dietary SCS caused alteration in rhythms and/or amplitudes of clock genes was more significant in brain than in liver. In addition, peroxisome proliferator-activated receptor (PPARα), sterol regulatory element binding protein-1c (SREBP-1c), together with their target genes carnitine palmitoyl transferase (CPT), and fatty acid synthase (FAS) showed marked changes in rhythm and/or amplitude in SCS group mice. These results suggested that SCS could affect the daily expression patterns of clock genes in brain and liver tissues, and alter the clock-controlled genes involved in lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ando H, Oshima Y, Yanagihara H, Hayashi Y, Takamura T, Kaneko S, Fujimura A (2006) Profile of rhythmic gene expression in the livers of obese diabetic KK-Ay mice. Biochem Biophys Res Commun 346(4):1297–1302

    Article  PubMed  CAS  Google Scholar 

  2. Ando H, Yanagihara H, Hayashi Y, Obi Y, Tsuruoka S, Takamura T, Kaneko S, Akio FujimuraFujimura A (2005) Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146(12):5631–5636

    Article  PubMed  CAS  Google Scholar 

  3. Antle MC, Steen NM, Mistlberger RE (2001) Adenosine and caffeine modulate circadian rhythms in the Syrian hamster. Neuroreport 12(13):2901–2905

    Article  PubMed  CAS  Google Scholar 

  4. Báez-Ruiz A, Escobar C, Aguilar-Roblero R, Vázquez-Martínez O, Díaz-Muñoz M (2005) Metabolic adaptations of liver mitochondria during restricted feeding schedules. Am J Physiol-Gastrointest and Liver Physiol 289(6):G1015–G1023

    Article  Google Scholar 

  5. Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330(6009):1349–1354

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Cailotto C, La Fleur SE, Van Heijningen C, Wortel J, Kalsbeek A, Feenstra M, Pévet P, Buijs RM (2005) The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: Are the clock genes involved? Eur J Neurosci 22(10):2531–2540

    Article  PubMed  Google Scholar 

  7. Chen JM, Huang CQ, Ai M, Kuang L (2013) Circadian rhythm of TSH levels in subjects with Alzheimer’s disease (AD). Aging Clin Exp Res 25(2):153–157

    Article  PubMed  Google Scholar 

  8. Chen CP, Kuhn P, Advis JP, Sarkar DK (2004) Chronic ethanol consumption impairs the circadian rhythm of pro-opiomelanocortin and period genes mRNA expression in the hypothalamus of the male rat. J Neurochem 88(6):1547–1554

    Article  PubMed  CAS  Google Scholar 

  9. Chimin P, Farias Tda S, Torres-Leal FL, Bolsoni-Lopes A, Campaña AB, Andreotti S, Lima FB (2014) Chronic glucocorticoid treatment enhances lipogenic activity in visceral adipocytes of male Wistar rats. Acta Physiol 211(2):409–420

    Article  CAS  Google Scholar 

  10. Cordeiro A, Souza LL, Einicker-Lamas M, Pazos-Moura CC (2013) Non-classic thyroid hormone signalling involved in hepatic lipid metabolism. J Endocrinol 216(3):R47–R57

    Article  PubMed  CAS  Google Scholar 

  11. De Boer SF, Van der Gugten J (1987) Daily variations in plasma noradrenaline, adrenaline and corticosterone concentrations in rats. Physiol Behav 40(3):323–328

    Article  PubMed  Google Scholar 

  12. Froy O (2007) The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol 28(2–3):61–71

    Article  PubMed  CAS  Google Scholar 

  13. Froy O (2010) Metabolism and circadian rhythms—implications for obesity. Endocr Rev 31(1):1–24

    Article  PubMed  CAS  Google Scholar 

  14. Hammes GG (1985) Fatty acid synthase: Elementary steps in catalusis and regulation. Curr Top Cell Regul 26:311–324

    Article  PubMed  CAS  Google Scholar 

  15. Hiai S, Yokoyama H, Oura H, Yano S (1979) Stimulation of pituitary-adrenocortical system by ginseng saponin. Endocrinologia Japonica 26(6):661–665

    Article  PubMed  CAS  Google Scholar 

  16. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Investig 109(9):1125–1131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Hu XQ, Li ZJ, Xue Y, Xu J, Xue C, Wang J, Wang Y (2012) Dietary saponins of Sea cucumber ameliorate obesity, hepatic steatosis, and glucose intolerance in high-fat diet–fed mice. J Med Food 15(10):909–916

    Article  PubMed  CAS  Google Scholar 

  18. Hu XQ, Xu J, XueY LZJ, Wang JF, Wang JH, Xue CH, Wang YM (2012) Effects of bioactive components of sea cucumber on the serum, liver lipid profile and lipid absorption. Biosci Biotechnol Biochem 76(12):2214–2218

    Article  PubMed  CAS  Google Scholar 

  19. Inoue I, Shinoda Y, Ikeda M, Hayashi K, Kanazawa K, Nomura M, Matsunaga T, Xu H, Kawai S, Awata T, Komoda T, Katayama S (2004) CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element. J Atheroscler Thromb 12(3):169–174

    Article  Google Scholar 

  20. Iwanaga H, Yano M, Miki H, Okada K, Azama T, Takiguchi S, Fujiwara Y, Yasuda T, Nakayama M, Kobayashi M, Oishi K, Ishida N, Nagai K, Monden M (2005) Per2 gene expressions in the suprachiasmatic nucleus and liver differentially respond to nutrition factors in rats. J Parenter Enter Nutr 29(3):157–161

    Article  CAS  Google Scholar 

  21. Kalsbeek A, Van der Spek R, Lei J, Endert E, Buijs RM, Fliers E (2012) Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol 349(1):20–29

    Article  PubMed  CAS  Google Scholar 

  22. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6(5):414–421

    Article  PubMed  CAS  Google Scholar 

  23. Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5(2):179–189

    Article  CAS  Google Scholar 

  24. Langlais PJ, Hall T (1998) Thiamine deficiency-induced disruptions in the diurnal rhythm and regulation of body temperature in the rat. Metab Brain Dis 3:225–239

    Article  Google Scholar 

  25. Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 447:477–481

    Article  PubMed  CAS  Google Scholar 

  26. Lizier M, Lorenzo Bomba, Andrea Minuti, Chegdani F, Capraro J, Tondelli B, Mazza R, Callegari ML, Trevisi E, Rossi F, Marsan PA, Lucchini F (2013) The nutrigenomic investigation of C57BL/6 N mice fed a short-term high-fat diet highlights early changes in clock genes expression. Genes & Nutrition (5):465–474

  27. McNamara P, Seo S, Rudic RD, Sehgal A, Chakravarti D, FitzGerald GA (2001) Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105(7):877–889

    Article  PubMed  CAS  Google Scholar 

  28. Mendoza J, Graff C, Dardente H, Pevet P, Challet E (2005) Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J Neurosci 25(6):1514–1522

    Article  PubMed  CAS  Google Scholar 

  29. Mohri T, Emoto N, Nonaka H, Fukuya H, Yagita K, Okamura H, Yokoyama M (2003) Alterations of circadian expressions of clock genes in Dahl salt-sensitive rats fed a high-salt diet. Hypertension 42(2):189–194

    Article  PubMed  CAS  Google Scholar 

  30. Mullur R, Liu YY, Brent GA (2012) Thyroid hormone regulation of metabolism. Med Clin North Am 96:269–281

    Article  Google Scholar 

  31. Osborne TF (2000) Sterol regulatory element-binding proteins (SREBPs): Key regulators of nutritional homeostasis and insulin action. J Biol Chem 275(42):32379–32382

    Article  PubMed  CAS  Google Scholar 

  32. Rosenwasser AM, Fecteau ME, Logan RW, Reed JD, Cotter SJ, Seggio JA (2005) Circadian activity rhythms in selectively bred ethanol-preferring and nonpreferring rats. Alcohol 36(2):69–81

    Article  PubMed  CAS  Google Scholar 

  33. Ruiter M, La Fleur SE, van Heijningen C, van der Vliet J, Kalsbeek A, Buijs RM (2003) The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior. Diabetes 52(7):1709–1715

    Article  PubMed  CAS  Google Scholar 

  34. Sherman H, Gutman R, Chapnik N, Meylan J, le Coutre J, Froy O (2011) Caffeine alters circadian rhythms and expression of disease and metabolic markers. Int J Biochem Cell Biol 43(5):829–838

    Article  PubMed  CAS  Google Scholar 

  35. Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, Wada T, Aoyagi T, Tezuka M (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci U S A 102(34):12071–12076

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Shirai H, Oishi K, Ishida N (2006) Bidirectional CLOCK/BMAL1-dependent circadian gene regulation by retinoic acid in vitro. Biochem Biophys Res Commun 351(2):387–391

    Article  PubMed  CAS  Google Scholar 

  37. Takahashi K, Yamada T, Tsukita S, Kaneko K, Shirai Y, Munakata Y, Ishigaki Y, Imai J, Uno K, Hasegawa Y, Sawada S, Oka Y, Katagiri H (2013) Chronic mild stress alters circadian expressions of molecular clock genes in the live. Am J Physiol-Endocrinol Metab 304(3):E301–E309

    Article  PubMed  CAS  Google Scholar 

  38. Vollmers VC, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci 106(50):21453–21458

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Wang X, Xue J, Yang J, Xie M (2013) Timed high-fat diet in the evening affects the hepatic circadian clock and PPARα-mediated lipogenic gene expressions in mice. Genes & nutrition 8(5):457–463

    Article  CAS  Google Scholar 

  40. Wang J, Yin L, Lazar MA (2006) The orphan nuclear receptor Rev-erb alpha regulates circadian expression of plasminogen activator inhibitor type 1. J Biol Chem 281(45):33842–33848

    Article  PubMed  CAS  Google Scholar 

  41. Young ME, Wilson CR, Razeghi P, Guthrie PH, Taegtmeyer H (2002) Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J Mol Cell Cardiol 34(2):223–231

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2012BAD33B07), National Natural Science Foundation of China (31371757) and Program for New Century Excellent Talents in University (NCET-13-0534).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, M., Cui, J., Xu, J. et al. Effects of dietary sea cucumber saponin on the gene expression rhythm involved in circadian clock and lipid metabolism in mice during nighttime-feeding. J Physiol Biochem 70, 801–808 (2014). https://doi.org/10.1007/s13105-014-0349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-014-0349-9

Keywords

Navigation