Skip to main content
Log in

Low-rank matrix recovery via smooth rank function and its application in image restoration

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Recently, due to smooth rank function generally lie much closer to essential rank function than existing methods, it was used to handle matrix completion problem. In this paper, a new approach for solving low-rank matrix recovery problem based on smooth function is proposed. It not only uses a smooth function to approximate the rank function, but also approximates the \(l_{0}\)-norm with a continuous and differentiable function. In addition, gradient decreasing approach is used to solve the minimization problem. Finally, experimental results show that our proposed algorithm provides a higher accurate in most cases with reasonable running time. Especially, it has higher approximation performance than other methods for additive Gaussian noise, Rayleigh noise, and mixed noise of Gaussian and salt and pepper noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li XL, Pang YW (2010) Deterministic column-based matrix decomposition. IEEE Trans Knowl Data Eng 22(1):145–149

    Article  MathSciNet  Google Scholar 

  2. Yuan Y, Li XL, Pang YW, Lu X, Tao DC (2009) Binary sparse nonnegative matrix factorization. IEEE Trans Circuits Syst Video Technol 19(5):772–777

    Article  Google Scholar 

  3. Ji TY, Huang TZ, Zhao XL, Ma TH, Liu G (2016) Tensor completion using total variation and low-rank matrix factorization. Inf Sci 326:243–257

    Article  MathSciNet  MATH  Google Scholar 

  4. Boumal N, Absil PA (2015) Low-rank matrix completion via preconditioned optimization on the Grassmann manifold. Linear Algebra Appl 475:200–239

    Article  MathSciNet  MATH  Google Scholar 

  5. Hu SQ, Wang J (2003) Absolute exponential stability of a class of continuous-time recurrent neural networks. IEEE Trans Neural Netw 14(1):35–45

    Article  Google Scholar 

  6. Wang XZ, Aamir R, Fu AM (2015) Fuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29:1185–1196

    Article  MathSciNet  Google Scholar 

  7. Wang XZ, Shao QY, Qing M, Zhai JH (2013) Architecture selection for networks trained with extreme learning machine using localized generalization error model. Neurocomputing 102:3–9

    Article  Google Scholar 

  8. Liu GC, Lin ZC, Yan SC, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  9. Peng YG, Suo JL, Dai QH, Xu WL (2014) Reweighted low-rank matrix recovery and its application in image restoration. IEEE Trans Cybern 44(12):2418–2430

    Article  Google Scholar 

  10. Lai ZH, Wong WK, Xu Y, Yang J, Zhang D (2016) Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans Neural Netw 27(4):723–735

    Article  MathSciNet  Google Scholar 

  11. Hong CQ, Yu J, Wan J, Tao DC, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659–5670

    Article  MathSciNet  Google Scholar 

  12. Hu SQ, Wang J (2001) Quadratic stabilizability of a new class of linear systems with structural independent time-varying uncertainty. Automatica 37(1):51–59

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang XZ, Xing HJ, Li Y et al (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654

    Article  Google Scholar 

  14. Wang XZ, Wang R, Feng HM, Wang HC (2014) A new approach to classifier fusion based on upper integral. IEEE Trans Cybern 44(5):620–635

    Article  Google Scholar 

  15. Wang XZ, Dong LC, Yan JH (2012) Maximum ambiguity based sample selection in fuzzy decision tree induction. IEEE Trans Knowl Data Eng 24(8):1491–1505

    Article  Google Scholar 

  16. Wright J, Ganesh A, Rao S, Peng YG, Ma Y (2009) Robust principal component analysis: exact recovery of corrupted low-rank matrices. In: Proceedings of neural information processing systems, pp 1–9

  17. Deng Y, Liu YB, Dai QH, Zhang Z, Wang Y (2012) Noisy depth maps fusion for multiview stereo via matrix completion. IEEE J Sel Topics Signal Process 6(5):566–582

    Article  Google Scholar 

  18. Ma R, Barzigar N, Roozgard A, Cheng S (2014) Decomposition approach for low-rank matrix completion and its applications. IEEE Trans Signal Process 62(7):1671–1683

    Article  MathSciNet  Google Scholar 

  19. Huang C, Ding XQ, Fang C, Wen D (2014) Robust image restoration via adaptive low-rank approximation and joint kernel regression. IEEE Trans Image Process 23(12):5284–5297

    Article  MathSciNet  MATH  Google Scholar 

  20. Chistov AL, Grigoriev DY (1984) Complexity of quantifier elimination in the theory of algebraically closed fields. In: Proceedings of 11th symposium Praha, Mathematical Foundations of Computer Science, 176, pp 17–31

  21. Fazel M, Hindi H, Boyd SP (2003) Matrix rank minimization with applications. In: Proceedings of the American Control Conference, pp 2156–2162

  22. Candès EJ, Plan Y (2010) Matrix completion with noise. Proc IEEE 98(6):925–936

    Article  Google Scholar 

  23. Mohan K, Fazel M, Hassibi B (2011) A simplified approach to recovery conditions for low rank matrices. In: Proceedings of international symposium on information theory (ISIT), pp 2318–2322

  24. Candès EJ, Li XD, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58(3):1–37

    Article  MathSciNet  MATH  Google Scholar 

  25. Cai JF, Candès EJ, Shen ZW (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin ZC, Chen MM, Ma Y (2009) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices, Dept. Elect. Comput. Eng., Univ. Illinois, Urbana, IL, USA, Tech. Rep., uilueng-09-2215

  27. Ma SQ, Goldfarb D, Chen LF (2011) Fixed point and bregman iterative methods for matrix rank minimization. Math Program 128(1):321–353

    Article  MathSciNet  MATH  Google Scholar 

  28. Wen ZW, Yin WT, Zhang Y (2012) Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math Program Comput 4(4):333–361

    Article  MathSciNet  MATH  Google Scholar 

  29. Parker JT, Schniter P, Cevher V (2014) Bilinear generalized approximate message passing. IEEE Trans Signal Process 62(22):5839–5853

    Article  MathSciNet  Google Scholar 

  30. Keshavan RH, Montanari A, Oh S (2010) Matrix completion from a few entries. IEEE Trans Inf Theory 56(6):2980–2998

    Article  MathSciNet  MATH  Google Scholar 

  31. Lee K, Bresler Y (2010) Admira: atomic decomposition for minimum rank approximation. IEEE Trans Inf Theory 56(9):4402–4416

    Article  MathSciNet  MATH  Google Scholar 

  32. Needell D, Tropp JA (2009) Cosamp: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 26(3):301–321

    Article  MathSciNet  MATH  Google Scholar 

  33. Mohimani H, Babaie-Zadeh M, Jutten C (2009) A fast approach for overcomplete sparse decomposition based on smoothed \(\ell ^{0}\) norm. IEEE Trans Signal Process 57(1):289–301

    Article  MathSciNet  MATH  Google Scholar 

  34. Malek-Mohammadi M, Babaie-Zadeh M, Amini A, Jutten C (2014) Recovery of low-rank matrices under affine constraints via a smooth rank function. IEEE Trans Signal Process 62(4):981–992

    Article  MathSciNet  Google Scholar 

  35. Ghasemi H, Malek-Mohammadi M, Babaie-Zadeh M, Jutten C (2011) SRF: matrix completion based on smoothed rank function. In: Proceedings of international conference acoustics speech signal processing (ICASSP), pp 3672–3675

  36. Blake A, Zisserman A (1987) Visual reconstruction. MIT Press, Cambridge

    Google Scholar 

  37. Lewis AS (1995) The convex analysis of unitarily invariant matrix norms. J Convex Anal 2:173–183

    MathSciNet  MATH  Google Scholar 

  38. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse prolbems. SIAM J Imaging Sci 2(1):183–202

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61502024, 61572067, 61473111), Projects of International Cooperation and Exchanges NSFC (No. 61611530710), Beijing Municipal Natural Science Foundation (No. 4162050), Natural Science Foundation of Guangdong Province (No. 2016A030313708), Science and Technology Plan of Beijing Municipal Education Commission (No. SQKM201610016009), Talent Program of Beijing University of Civil Engineering and Architecture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigang Cen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhao, R., Cen, Y. et al. Low-rank matrix recovery via smooth rank function and its application in image restoration. Int. J. Mach. Learn. & Cyber. 9, 1565–1576 (2018). https://doi.org/10.1007/s13042-017-0665-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-017-0665-9

Keywords

Navigation