Skip to main content
Log in

Limit cycle oscillation in aeroelastic systems and its adaptive fractional-order fuzzy control

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Alaeroelastic system is a complex system which can produce limit cycles oscillation. In this paper, an adaptive fractional-order fuzzy controller is presented to suppress flutter in an alaeroelastic system. The studied system is a kind of nonlinear system with two freedoms (the plunge displacement and the pitch angle). A terminal sliding mode control is proposed, the fuzzy system parameters are updated by fractional-order differential equations and the stability of the closed-loop system is discussed by means of Lyapunov stability theory. Finally, numerical simulations are demonstrated to verify the effectiveness of proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ren FL, Cao F, Cao JD (2015) Mittag-leffler stability and generalized mittag-leffler stability of fractional-order gene regulatory networks. Neurocomputing 160:185–190

    Article  Google Scholar 

  2. Luo JH, Li GJ, Liu H (2014) Linear control of fractional-order financial chaotic systems with input saturation. Discret Dynam Nat Soc 2014:802429

    MathSciNet  Google Scholar 

  3. Shen J, Lam J (2014) Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica 50(2):547–551

    Article  MathSciNet  MATH  Google Scholar 

  4. Hua CC, Liu D, Guan XP (2014) Necessary and sufficient stability criteria for a class of fractional-order delayed systems. IEEE Trans Circ Syst II Exp Briefs 61(1):59–63

    Google Scholar 

  5. Liu H, Pan Y, Li S, et al (2016) Adaptive fuzzy backstepping control of fractional-order nonlinear systems[J]. IEEE Trans Syst Man Cybern: Syst. doi:10.1109/TSMC.2640950

    Google Scholar 

  6. Liu H, Li S, Sun Y, Wang H (2015) Prescribed performance synchronization for fractional-order chaotic systems. Chin Phys B 24(9):090505

    Article  Google Scholar 

  7. Song C, Cao JD (2014) Dynamics in fractional-order neural networks. Neurocomputing 142:494–498

    Article  Google Scholar 

  8. Chen J, Zeng Z, Jiang P (2014) Global Mittag-Leffler stability and synchronization of memristorbased fractional-order neural networks. Neural Netw 51:1–8

    Article  MATH  Google Scholar 

  9. Huang X, Zhao Z, Wang Z, Li YX (2012) Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94:13–21

    Article  Google Scholar 

  10. Yu J, Hu C, Jiang HJ, Fan XL (2014) Projective synchronization for fractional neural networks. Neural Netw 49:87–95

    Article  MATH  Google Scholar 

  11. Li GJ, Liu H (2016) Stability analysis and synchronization for a class of fractional-order neural networks. Entropy 18(2):55

    Article  Google Scholar 

  12. Rakkiyappan R, Velmurugan G, Cao JD (2015) Stability analysis of fractional-order complex-valued neural networks with time delays. Chaos Solitons Fractals 78:297–316

    Article  MathSciNet  MATH  Google Scholar 

  13. Pan Y, Yu H (2016) Biomimetic hybrid feedback feedforward neural-network learning control.  IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2527501

    Google Scholar 

  14. Cao JD, Rakkiyappan R, Maheswari K, Chandrasekar A (2016) Exponential \(H_\infty\) filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities. Sci China Technol Sci 59(3):387–402

    Article  Google Scholar 

  15. Lu J, Wang Z, Cao J, et al (2012) Pinning impulsive stabilization of nonlinear dynamical networks with time-varying delay. Int J Bifurcat Chaos. doi:10.1142/S0218127412501763

  16. Li Y, Chen YQ, Podlubny I (2009) Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8):1965–1969

    Article  MathSciNet  MATH  Google Scholar 

  17. Efe MO (2008) Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm. IEEE Trans Syst Man Cybern 38(6):1561–1570

    Article  Google Scholar 

  18. Cao JD, Yuan K, Li HX (2006) Global Asymptotical stability of generalized recurrent neural networks with multiple discrete delays and distributed delays. IEEE Trans Neural Netw 17(6):1646–1651

    Article  Google Scholar 

  19. Pan Y, Yu H (2016) Composite learning from adaptive dynamic surface control. IEEE Trans Autom Control 61(9):2603–2609

    Article  MathSciNet  MATH  Google Scholar 

  20. Nayfeh AH, Mook DT (1995) Nonlinear oscillations. Wiley InterScience, NewYork

    Book  MATH  Google Scholar 

  21. Dowell EH (1981) Non-linear oscillator models in bluff body aeroelasticity. J Sound Vib 75:251–264

    Article  MATH  Google Scholar 

  22. vanderPol B, vanderMark J (1927) Frequency demultiplication. Nature 120: 363–364

  23. Domany E, Gendelman OV (2013) Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink. J Sound Vib 21:5489–5507

    Article  Google Scholar 

  24. Lee YS, FVakakis A, Bergman LA, McFarland DM (2006) Suppression of limit cycle oscillations in the Van der Pol oscillator by means of passive nonlinear energy sinks(NESs). Struct Control Health Monit 13:41–75

  25. Gendelman OV, Bar T (2010) Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink. Physica D 239:220–229

    Article  MathSciNet  MATH  Google Scholar 

  26. Dunnmon JA, Stanton SC, Mann BP et al (2011) Power extraction from aeroelastic limit cycle oscillations. J Fluids Struct 27:1182–1198

    Article  Google Scholar 

  27. Drachinsky A, Raveh DE (2016) Limit-cycle oscillations of a pre-tensed membrane strip. J Fluids Struct 60:1–22

    Article  Google Scholar 

  28. Dardel M, Bakhtiari-Nejad F (2010) A reduced order of complete aeroelastic model for limit cycle oscillations. Aerosp Sci Technol 14:95–105

    Article  Google Scholar 

  29. Eftekhari SA, Bakhtiari-Nejad F, Dowell EH (2014) Damage detection of an aeroelastic panel using limit cycle oscillation analysis. Int J Non Linear Mech 58:99–110

    Article  Google Scholar 

  30. Bhoir NG, Singh SN (2004) Output feedback nonlinear control of an aeroelastic with unsteady aerodynamics. Aerosp Sci Technol 8:195–205

    Article  MATH  Google Scholar 

  31. Strganac TW, Thompson DE (2008) Identification and control of limit cycle oscillations in aeroelastic systems. J Guid Control Dyn 23:1127–1133

    Article  Google Scholar 

  32. Gujjula S, Singh SN, Yim W (2005) Adaptive and neural control of a wing section using leading- and trailing-edge surfaces. Aerosp Sci Technol 9:161–171

    Article  MATH  Google Scholar 

  33. Chen CL, Chang CW, Yau HT (2013) Terminal sliding mode control for aeroelastic systems. Nonlinear Dyn 70:2015–2026

    Article  MathSciNet  Google Scholar 

  34. Chen CL, Peng CC, Yau HT (2014) High-order sliding mode controller with backstepping design for aeroelastic systems. Commun Nonlinear Sci Numer Simulat 17:1813–1823

    Article  MathSciNet  MATH  Google Scholar 

  35. Wen GH, Hu G, Yu WW, Cao JD, Chen GR (2013) Consensus tracking for higher-order multi-agent systems with switching directed topologies and occasionally missing control inputs. Syst Control Lett 62(12):1151–1158

    Article  MathSciNet  MATH  Google Scholar 

  36. Balasubramaniam P, Syed Ali M (2011) Stochastic stability of uncertain fuzzy recurrent neural networks with Markovian jumping parameters. Int J Comput Math 88(5):892–904

  37. Pan Y et al (2016) Hybrid feedback feedforward: An efficient design of adaptive neural network control. Neural Netw 76:122–134

    Article  Google Scholar 

  38. Lu JQ, Ho DW, Cao JD (2010) A unified synchronization criterion for impulsive dynamical networks. Automatica 46(7):1215–1221

    Article  MathSciNet  MATH  Google Scholar 

  39. Balasubramaniam P, Syed Ali M (2010) Robust exponential stability of uncertain fuzzy Cohen-Grossberg neural networks with time-varying delays. Fuzzy Sets Syst 161:608–618

  40. Pan Y, Sun T, Yu H (2016) Composite adaptive dynamic surface control using online recorded data. Int J Robust Nonlinear Control. doi:10.1002/rnc.3541

  41. Zhang XL, Zhang FY (2012) Synchronizing uncertain chaotic systems by using adaptive fuzzy chattering free sliding mode control. J Comput Inf Syst 8:10509–10515

    Google Scholar 

  42. Xiang W, Yugao HF (2010) Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties. Commun Nonlinear Sci Numer Simulat 15:3241–3247

    Article  MathSciNet  MATH  Google Scholar 

  43. Balasubramaniam P, Syed Ali M (2011) Stability analysis of Takagi-Sugeno stochastic fuzzy Hopfield neural networks with discrete and distributed time varying delays. Neurocomputing 74(10):1520–1526

  44. Pan YP, Yu HY, Sun TR (2015) Global asymptotic stabilization using adaptive fuzzy PD control. IEEE Trans Cybern 45(3):574–582

    Article  Google Scholar 

  45. Liu H, Li S, Cao J, et al (2017) Adaptive fuzzy prescribed performance controller design for a class of uncertain fractional-order nonlinear systems with external disturbances. Neurocomputing  219:422–430

    Article  Google Scholar 

  46. Singh SN, Brenner M (2003) Limit cycle oscillation and orbital stability in aeroelastic systems with torsional nonlinearity. Nonlinear Dyn 31:435–450

    Article  MATH  Google Scholar 

  47. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic Press, New York

    MATH  Google Scholar 

  48. Duarte-Mermoud MA, Aguila-Camacho N, Gallegos JA, Castro-Linares R (2015) Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun Nonlinear Sci Numer Simul 22:650–659

    Article  MathSciNet  MATH  Google Scholar 

  49. Yu SH, Yu XH, Shirinzadeh BJ, Mau ZH (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41:1957–1964

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu LP, Han ZZ, Li WL (2012) Global sliding mode control and application in chaotic systems. Nonlinear Dyn 56:193–198

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61403157), the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China (Grant No. KJ2016A665), the Foundation for Distinguished Young Talents in Higher Education of Anhui of China (Grant No. GXFXZD2016204), and the Natural Science Foundation of Huainan Normal University (Grant No. 2014XK19ZD, 2016xj52 ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinde Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Cao, J., Alsaedi, A. et al. Limit cycle oscillation in aeroelastic systems and its adaptive fractional-order fuzzy control. Int. J. Mach. Learn. & Cyber. 9, 1297–1305 (2018). https://doi.org/10.1007/s13042-017-0644-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-017-0644-1

Keywords

Navigation