Skip to main content
Log in

Semi-supervised low rank kernel learning algorithm via extreme learning machine

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Semi-supervised kernel learning methods have been received much more attention in the past few years. Traditional semi-supervised non-parametric kernel learning (NPKL) methods usually formulate the learning task as a semi-definite programming (SDP) problem, which is very time consuming. Although some fast semi-supervised NPKL methods have been proposed recently, they usually scale very poorly. Furthermore, many semi-supervised NPKL methods are developed based on the manifold assumption. But, such an assumption might be invalid when handling some high-dimensional and sparse data, which has severely negative effect on the performance of learning algorithms. In this paper, we propose a more efficient semi-supervised NPKL method, which can effectively learn a low-rank kernel matrix from must-link and cannot-link constraints. Specially, by virtue of the nonlinear embedding functions based on extreme learning machine (ELM), the proposed method has the ability of coping with data points that do not have a clear manifold structure in a low dimensional space. The proposed method is formulated as a trace ratio optimization problem, which is combined with dimensionality reduction in ELM feature space and aims to find optimal low-rank kernel matrices. The proposed optimization problem can be solved much more efficiently than SDP solvers. Extensive experiments have validated the superior performance of the proposed method compared to state-of-the-art semi-supervised kernel learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\( {\mathbb{R}}^{\text{d}} \) :

The input d-dimensional Euclidean space

n :

The number of total training data points

c :

The number of classes that the samples belong to

\( \varvec{X} \) :

\( \varvec{X} = \left[ {\varvec{x}_{1} , \ldots .,\varvec{x}_{n} } \right] \in {\mathbb{R}}^{d \times n} \) is the training data matrix

\( \varvec{Y} \) :

\( \varvec{Y} = \left[ {\varvec{y}_{1} , \ldots ,\varvec{y}_{n} } \right]^{T} \in {\mathbb{B}}^{{n \times {\text{c}}}} \) is the 0–1 class assignment matrix. \( \varvec{y}_{i} \in {\mathbb{B}}^{c \times 1} \) is the lable vector of \( \varvec{x}_{i} \), and all components of \( \varvec{y}_{i} \) are \( 0 \)s except one being \( 1 \)

\( \varvec \phi \) :

\( \varvec \phi \left( \varvec{x} \right) = \left( {\varvec{\psi}_{1} \left( {\varvec{x}_{1} } \right), \ldots ,\varvec{\psi}_{n} (\varvec{x}_{n} )} \right) \) is the transformed data to the kernel space

\( k\left( {\varvec{x},\varvec{y}} \right) \) :

Kernel function of variables \( \varvec{x} \) and \( \varvec{y} \)

\( \varvec{K}^{\varvec{'}} \) :

Kernel matrix \( \varvec{K}^{\varvec{'}} = \left[ {k^{'} \left( {\varvec{x}_{i} ,\varvec{x}_{j} } \right)} \right]_{n \times n} \) for nonlinear embedding

\( \varvec{e}_{i} \) :

The ith column of the \( n \times n \) identity matrix

tr(\( \varvec{A} \)):

The trace of the matrix \( \varvec{A} \), that is, the sum of the diagonal elements of the matrix \( \varvec{A} \)

References

  1. Bucak SS, Jain AK (2014) Multiple kernel learning for visual object recognition: a review. IEEE Trans Pattern Anal Mach Intell 36(7):1

    Article  Google Scholar 

  2. Zhang X, Mahoor MH (2015) Task-dependent multi-task multiple kernel learning for facial action unit detection. Pattern Recogn 51:187–196

    Article  Google Scholar 

  3. Liang Z, Zhang L, Liu J (2015) A novel multiple kernel learning method based on the kullback–leibler divergence. Neural Process Lett 42(3):745–762

    Article  Google Scholar 

  4. Liu B, Xia SX, Zhou Y (2013) Unsupervised non-parametric kernel learning algorithm. Knowl Based Syst 44(1):1–9

    Article  Google Scholar 

  5. Hu EL, Kwok JT (2014) Scalable nonparametric low-rank kernel learning using block coordinate descent. IEEE Transact Neural Netw Learn Syst 26(9):1927–1938

    Article  MathSciNet  Google Scholar 

  6. Aiolli F, Donini M (2015) EasyMKL: a scalable multiple kernel learning algorithm. Neurocomputing 169:215–224

    Article  Google Scholar 

  7. Cortes C, Kloft M, Mohri M (2013) Learning kernels using local rademacher complexity. Adv Neural Inf Process Syst (NIPS) 26:2760–2768

    Google Scholar 

  8. Anguita D, Ghio A, Oneto L, Ridella S (2014) Unlabeled patterns to tighten Rademacher complexity error bounds for kernel classifiers. Pattern Recogn Lett 37:210–219

    Article  Google Scholar 

  9. Zhang K, Wang Q, Lan L, Sun Y, Marsic I (2014) Sparse semi-supervised learning on low-rank kernel. Neurocomputing 129(4):265–272

    Article  Google Scholar 

  10. Meng J, Jung C, Shen Y, Jiao L, Liu J (2015) Adaptive constraint propagation for semi-supervised kernel matrix learning. Neural Process Lett 41(1):1–17

    Article  Google Scholar 

  11. Gao H, Song S, Gupta JND et al (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Transact Cybern 44(12):1

    Article  Google Scholar 

  12. Li F, Yang J, Wang J (2007) A transductive framework of distance metric learning by spectral dimensionality reduction. In: Proceedings of the 24th International Conference on Machine Learning (ICML), Corvallis, OR, USA, pp 513–520

  13. Zhong S, Chen D, Xu Q et al (2013) Optimizing the Gaussian kernel function with the formulated kernel target alignment criterion for two-class pattern classification. Pattern Recogn 46(7):2045–2054

    Article  MATH  Google Scholar 

  14. Yin X, Chen S, Hu E, Zhang D (2010) Semi-supervised clustering with metric learning: an adaptive kernel method. Pattern Recogn 43:1320–1333

    Article  MATH  Google Scholar 

  15. Mohsenzadeh Y, Sheikhzadeh H (2015) Gaussian kernel width optimization for sparse Bayesian learning. IEEE Transact Neural Netw Learn Syst 26(4):709–719

    Article  MathSciNet  Google Scholar 

  16. Nazarpour A, Adibi P (2015) Two-stage multiple kernel learning for supervised dimensionality reduction. Pattern Recogn 48(5):1854–1862

    Article  Google Scholar 

  17. Lin Y-Y, Liu T-L, Fuh C-S (2011) Multiple kernel learning for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 33:1147–1160

    Article  Google Scholar 

  18. Orabona F, Jie L, Caputo B (2012) Multi kernel learning with online-batch optimization. J Mach Learn Res 13:227–253

    MathSciNet  MATH  Google Scholar 

  19. Chen C, Zhang J, He X et al (2012) Non-parametric kernel learning with robust pairwise constraints. Int J Mach Learn Cybernet 3(2):1–14

    Article  Google Scholar 

  20. Jian M, Jung C, Shen Y et al (2015) Adaptive constraint propagation for semi-supervised kernel matrix learning. Neural Process Lett 41(1):107–123

    Article  Google Scholar 

  21. Hoi SCH, Jin R, Lyu MR (2007) Learning nonparametric kernel matrices from pairwise constraints. In: Proceedings of the 24th International Conference on Machine Learning (ICML), New York, USA, pp 361–368

  22. Li Z, Liu J, Tang X (2008) Pairwise constraint propagation by semidefinite programming for semi-supervised classification. In: Proceedings of the 25th International Conference on Machine Learning (ICML), pp 576–583

  23. Zhuang J, Tsang IW, Hoi SCH (2011) A family of simple non-parametric kernel learning algorithms. J Mach Learn Res 12:1313–1347

    MathSciNet  MATH  Google Scholar 

  24. Baghshah MS, Shouraki SB (2011) Learning low-rank kernel matrices for constrained clustering. Neurocomputing 74(12):2201–2211

    Article  Google Scholar 

  25. Yeung DY, Chang H (2007) A kernel approach for semi-supervised metric learning. IEEE Trans Neural Netw 18(1):141–149

    Article  Google Scholar 

  26. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434

    MathSciNet  MATH  Google Scholar 

  27. Feiping N, Zinan Z, Tsang IW, Dong X, Changshui Z (2011) Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans Neural Netw 22(11):1796–1808

    Article  Google Scholar 

  28. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multi-class classification. IEEE Trans Syst Man Cybern 42(2):513–529

    Article  Google Scholar 

  29. Wang XZ, Ashfaq RAR, Fu AM (2015) Fuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29(3):1185–1196

    Article  MathSciNet  Google Scholar 

  30. Lu SX, Wang XZ, Zhang GQ, Zhou X (2015) Effective algorithms of the Moore-Penrose inverse matrices for extreme learning machine. Intell Data Anal 19(4):743–760

    Article  Google Scholar 

  31. Ashfaq RAR, Wang XZ, Huang JZX, Abbas H, He YL (2016) Fuzziness based semi-supervised learning approach for intrusion detection system. Inf Sci. doi:10.1016/j.ins.2016.04.019 (in press)

    Google Scholar 

  32. He YL, Wang XZ, Huang JZX (2016) Fuzzy nonlinear regression analysis using a random weight network. Inf Sci 364–365:222–240

    Article  Google Scholar 

  33. You ZH, Lei YK, Zhu L, Xia JF, Wang B (2013) Prediction of protein–protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. BMC Bioinform 14(Suppl 8):S10

    Article  Google Scholar 

  34. Kulis B, Basu S, Dhillon I (2009) Semi-supervised graph clustering: a kernel approach. Mach Learn 74(1):1–22

    Article  Google Scholar 

  35. Jia Y, Nie F, Zhang C (2009) Trace ratio problem revisited. IEEE Trans Neural Netw 20(4):729–735

    Article  Google Scholar 

  36. Liu M, Sun W, Liu B (2015) Multiple kernel dimensionality reduction via spectral regression and trace ratio maximization. Knowl Based Syst 83(1):159–169

    Article  Google Scholar 

  37. Chen Weifu, Feng Guocan (2012) Spectral clustering: a semi-supervised approach. Neurocomputing 77(1):229–242

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61403394) and the Fundamental Research Funds for the Central Universities (No. 2014QNA46).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Liu or Chen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Liu, B., Zhang, C. et al. Semi-supervised low rank kernel learning algorithm via extreme learning machine. Int. J. Mach. Learn. & Cyber. 8, 1039–1052 (2017). https://doi.org/10.1007/s13042-016-0592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0592-1

Keywords

Navigation