Skip to main content
Log in

A compactness based saliency approach for leakages detection in fluorescein angiogram

International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

This study has developed a novel saliency detection method based on compactness feature for detecting three common types of leakage in retinal fluorescein angiogram: large focal, punctate focal, and vessel segment leakage. Leakage from retinal vessels occurs in a wide range of retinal diseases, such as diabetic maculopathy and paediatric malarial retinopathy. The proposed framework consists of three major steps: saliency detection, saliency refinement and leakage detection. First, the Retinex theory is adapted to address the illumination inhomogeneity problem. Then two saliency cues, intensity and compactness, are proposed for the estimation of the saliency map of each individual superpixel at each level. The saliency maps at different levels over the same cues are fused using an averaging operator. Finally, the leaking sites can be detected by masking the vessel and optic disc regions. The effectiveness of this framework has been evaluated by applying it to different types of leakage images with cerebral malaria. The sensitivity in detecting large focal, punctate focal and vessel segment leakage is 98.1, 88.2 and 82.7 %, respectively, when compared to a reference standard of manual annotations by expert human observers. The developed framework will become a new powerful tool for studying retinal conditions involving retinal leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Chui T, Dubow M, Pinhas A, Shah N, Gan A, Weitz R et al (2014) Comparison of adaptive optics scanning light ophthalmoscopic fluorescein angiography and offset pinhole imaging. Biomed Opt Express 5(4):1173–1189

    Article  Google Scholar 

  2. Patton N, Aslam T, MacGillivray T, Pattie A, Deary IJ, Dhillon B (2005) Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat 206:319–348

    Article  Google Scholar 

  3. Potchen M, Kampondeni S, Seydel K, Birbeck G, Hammond C, Bradley W (2012) Acute brain MRI findings in 120 Malawian children with cerebral malaria: new insights into an ancient disease. Am J Neuroradiol 33:1740–1746

    Article  Google Scholar 

  4. Beare N, Glover S, Molyneux M (2009) Malarial retinopathy in cerebral malaria. Am J Trop Med Hyg 80:171

    Google Scholar 

  5. Maccormick IJ, Maude R, Beares N, Borooah S, Glover S, Parry D et al (2015) Grading fluorescein angiograms in malarial retinopathy. Malar J 14:367

    Article  Google Scholar 

  6. Rabbani H, Allingham M, Mettu PS, Cousins SW, Farsiu S (2015) Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema. Invest Ophthalmol Vis Sci 56(3):1482–1492

    Article  Google Scholar 

  7. Martinez-Costa L, Marco P, Ayala G, Ves ED, Domingo J, Simo A (1998) Macular edema computeraided evaluation in ocular vein occlusions. Comput Biomed Res 31:374–384

    Article  Google Scholar 

  8. Phillips R, Spencer T, Ross P, Sharp P, Forrester J (1991) Quantification of diabetic maculopathy by digital imaging of the fundus. Eye 5:130–137

    Article  Google Scholar 

  9. Saito J, Roxburgh D, Sutton D, Ellingford A (1995) A new method of image analysis of fluorescein angiography applied to age-related macular degeneration. Eye 9:70–76

    Article  Google Scholar 

  10. Trucco E, Buchanan CR, Aslam T, Dhillon B (2007) Contextual detection of ischemic regions in ultra-wide-field-of-view retinal fluorescein angiograms. In: Proc. IEEE EMBC. pp 6739–6742

  11. Tsai CL, Yang CL, Chen SJ, Lin KS, Chan CH, Lin WY (2011) Automatic characterization of classic choroidal neovascularization by using AdaBoost for supervised learning. Invest Ophthalmol Vis Sci 52:2767–2774

    Article  Google Scholar 

  12. Yuan Y, Wang J, Li B, Meng M (2015) Saliency based ulcer detection for wireless capsule endoscopy diagnosis. IEEE Trans Med Imaging 34:2046–2057

    Article  Google Scholar 

  13. Mahapatra D, Sun Y (2011) MRF-based intensity invariant elastic registration of cardiac perfusion images using saliency information. IEEE Trans Biomed Eng 58(4):991–1000

    Article  Google Scholar 

  14. Deepak US, Chakravarty A, Sivaswamy J (2013) Visual saliency based bright lesion detection and discrimination in retinal images. In: Proc. IEEE ISBI. pp 1436–1439

  15. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: Proc. IEEE CVPR. pp 1–8

  16. Jampani V, Ujjwal, Sivaswamy J, Vaidya V (2012) Assessment of computational visual attention models on medical images. In: Proc. Indian Conf. Comput. Vis. Graph. Imag. Process. pp 1–8

  17. Gao D, Mahadevan V, Vasconcelos N (2008) On the plausibility of the discriminant center-surround hypothesis for visual saliency. J Vis 8(7):1–18

    Article  Google Scholar 

  18. Zhao Y, MacCormick I, Parry D, Beare N, Harding S, Zheng Y (2015) Automated detection of vessel abnormalities on fluorescein angiogram in malarial retinopathy. Sci Rep 5:11154

    Article  Google Scholar 

  19. Lu Y, Lai Z, Fan Z, Cui J, Zhu Q (2015) Manifold discriminant regression learning for image classification. Neurocomputing 166:475–486

    Article  Google Scholar 

  20. Yang M, Zhu P, Liu F, Shen L (2015) Joint representation and pattern learning for robust face recognition. Neurocomputing 168:70–80

    Article  Google Scholar 

  21. Wang X (2015) Learning from big data with uncertainty-editorial. J Intell Fuzzy Syst 28(5):2329–2330

    Article  MathSciNet  Google Scholar 

  22. Wang XZ, Ashfaq RAR, Fu AM (2015) Fuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29(3):1185–1196

    Article  MathSciNet  Google Scholar 

  23. He YL, Wang XZ, Huang JZ (2016) Fuzzy nonlinear regression analysis using a random weight network. Inf Sci 364:222–240

    Article  Google Scholar 

  24. Yl He, Liu JN, Hu YX, Wang XZ (2015) OWA operator based link prediction ensemble for social network. Expert Syst Appl 42(1):21–50

    Article  Google Scholar 

  25. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20:1254–1259

    Article  Google Scholar 

  26. Cheng M, Zhang G, Mitra N, Huang X, Hu S (2011) Global contrast based salient region detection. In: Proc. IEEE International CVPR. pp 409–416

  27. Ng W, Yeung D, Firth C, Tsang E, Wang X (2018) Feature selection using localized generalization error for supervised classification problems using RBFNN. Patt Recognit 41:3706–3719

    Article  MATH  Google Scholar 

  28. Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp 1597–1604

  29. Koch C, Ullman C (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurbiol 4:219–227

    Google Scholar 

  30. Clark J, Ferrier N (1988) Modal control of an attentive vision system. In: Proc. IEEE ICCV. pp 514–523

  31. Milanese R (1993) Detecting salient regions in an image: from biological evidence to computer implementation. PhD thesis

  32. Bruce N, Tsotsos J (2006) Saliency based on information maximization. In: Proc. NIPS. vol 18, pp 155–162

  33. Harel J, Koch C, Perona P (2006) Graph-based visual saliency. In: Proc. NIPS. pp 545–552

  34. Aziz M, Mertsching B (2008) Fast and robust generation of feature maps for region-based visual attention. IEEE Trans Image Process 17:633–644

    Article  MathSciNet  Google Scholar 

  35. Wang Z, Li B (2008) A two-stage approach to saliency detection in images. In: Proc. IEEE ICASSP. pp 965–968

  36. Guo C, Zhang L (2008) Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform. In: Proc. IEEE CVPR. pp 1–8

  37. Cui X, Liu Q, Metaxas D (2009) Temporal spectral residual: fast motion saliency detection. In: Proc. 17th ACM Int. Conf. Multimedia. pp 617–620

  38. Kienzle W, Wichmann FA, Franz MO, Scholkopf B (2006) A nonparametric approach to bottom-up visual saliency. In: Proc. NIPS. p. 689–696

  39. Seo H, Milanfar P (2009) Static and space-time visual saliency detection by self-resemblance. J Vis 9(12):1–27

    Article  Google Scholar 

  40. Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Machine Intell 34(10):1915–1926

    Article  Google Scholar 

  41. Gopalakrishnan V, Hu Y, Rajan D (2011) Random walks on graphs for salient object detection in images. IEEE Trans Image Process 24(4):991–1000

    MATH  Google Scholar 

  42. Martins P, Carvalho P, Gatta C (2014) Context-aware features and robust image representations. J Vis Commun Image Represent 25:339–348

    Article  Google Scholar 

  43. Zhao Y, Liu Y (2013) Using region-based saliency for 3d interest points detection. In: Proc. CAIP. pp 108–115

  44. Zhao Y, Liu Y, Wu X, Harding SP, Zheng Y (2015) Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase. PLoS One 10:e0122332

    Article  Google Scholar 

  45. Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imag 34:1797–1807

    Article  Google Scholar 

  46. Zhao Y, MacCormick I, Parry D, Leach S, Beare N, Harding S et al (2015) Automated detection of leakage in fluorescein angiography images with application to malarial retinopathy. Sci Rep 5:10425

    Article  Google Scholar 

  47. Hong X, Chen S, Harris CJ (2007) A kernel-based two-class classifier for imbalanced data sets. IEEE Trans Neural Netw 18:28–41

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by National Basic Research Program of China (2013CB328806), National Natural Science Foundation of China (81430039, 61572076), the Key Projects in the National Science & Technology Pillar Program (2013BAI01B01), National Hi-Tech Research and Development Program (2015AA043203), and China Postdoctoral Science Foundation Grant (2015M570940), the Key Laboratory of Photoelectronic Imaging Technology and System Beijing Institute of Technology Ministry of Education of China (2016OEIOF03); the Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Su, P., Yang, J. et al. A compactness based saliency approach for leakages detection in fluorescein angiogram. Int. J. Mach. Learn. & Cyber. 8, 1971–1979 (2017). https://doi.org/10.1007/s13042-016-0573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0573-4

Keywords

Navigation