Skip to main content
Log in

Abstract

In this paper, a generalized competitive agglomeration (CA) clustering algorithm called entropy index constraints competitive agglomeration (EICCA) is proposed to avoid the drawback that the fuzziness index m in the CA must be fixed to be 2. The proposed EICCA is inspired by a basic fuzzy clustering algorithm called entropy index constraints fuzzy C-means (EIC-FCM), which is comparable to fuzzy C-means (FCM) in clustering performance but completely different from the FCM in the use of entropy index constraints with very clear physical meaning instead of the original constraints in the FCM. With the help of the EIC-FCM, the generalized competitive agglomeration algorithm EICCA is developed by introducing a competition term into the EIC-FCM’s objective function, which is similar to the CA by introducing a competition term into the FCM’s objective function. Our theoretical analysis and empirical results indicate that the EICCA can effectively find the optimal number of clusters for a dataset to be clustered, with more flexible index choices than the CA having the fuzziness index m = 2 only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li B, Wang M, Li XL, Tan SQ, Huang JW (2015) A strategy of clustering modification directions in spatial image steganography. IEEE Trans Inf Forensics Secur 10(9):1905–1917

    Article  Google Scholar 

  2. Zhu ZX, Jia S, He S, Sun YW, Ji Z, Shen LL (2015) Three-dimensional Gabor feature extraction for hyperspectral imagery classification using a memetic framework. Inform Sci 298:274–287

    Article  Google Scholar 

  3. Zhu ZX, Zhou JR, Ji Z, Shi YH (2011) DNA sequence compression using adaptive particle swarm optimization-based memetic algorithm. IEEE Trans Evol Comput 15(5):643–658

    Article  Google Scholar 

  4. Wang XZ (2015) Learning from big data with uncertainty—editorial. J Intell Fuzzy Syst 28(5):2329–2330

    Article  MathSciNet  Google Scholar 

  5. Deng ZH, Choi KS, Chung FL, Wang ST (2011) EEW-SC: enhanced entropy-weighting subspace clustering for high dimensional gene expression data clustering analysis. Appl Soft Comput 11(8):4798–4806

    Article  Google Scholar 

  6. Karayiannis NB (1997) Fuzzy partition entropies and entropy constrained fuzzy clustering algorithms. J Intell Fuzzy Syst 5(2):103–111

    Google Scholar 

  7. Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3(3):370–379

    Article  Google Scholar 

  8. Xu L, Krzyzak A, Oja E (1993) Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Trans Neural Netw 4(4):636–649

    Article  Google Scholar 

  9. Frigui H, Krishnapuram R (1997) Clustering by competitive agglomeration. Pattern Recogn 30(7):1109–1119

    Article  Google Scholar 

  10. Wang J, Wang ST, Chung FL, Deng ZH (2013) Fuzzy partition based soft subspace clustering and its applications in high dimensional data. Inform Sci 246:133–154

    Article  MATH  MathSciNet  Google Scholar 

  11. Iwayama M, Tokunaga T (1995) Hierarchical bayesian clustering for automatic text classification. In: Proc. of the 14th international joint conference on artificial intelligence, pp 1322–1327

  12. Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850

    Article  Google Scholar 

  13. Ma Jingjing, Tian Dayong, Gong Maoguo, Jiao Licheng (2014) Fuzzy clustering with non-local information for image segmentation. Int J Mach Learn Cybern 5(6):845–859

    Article  Google Scholar 

  14. Ludwig AS (2015) MapReduce-based fuzzy c-means clustering algorithm: implementation and scalability. Int J Mach Learn Cybern 6(6):923–934

    Article  Google Scholar 

  15. Jiang Jin, Yan Xin, Zhengtao Yu, Guo Jianyi, Tian Wei (2015) A Chinese expert disambiguation method based on semi-supervised graph clustering. Int J Mach Learn Cybern 6(2):197–204

    Article  Google Scholar 

  16. Hitendra Sarma T, Viswanath P, Eswara Reddy B (2013) A hybrid approach to speed-up the k-means clustering method. Int J Mach Learn Cybern 4(2):107–117

    Article  Google Scholar 

  17. Li RP, Mukaidono M (1995) A maximum-entropy approach to fuzzy clustering. In: Proc. of the 4th IEEE international conference on fuzzy systems, pp 2227–2232

  18. Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1(2):98–110

    Article  Google Scholar 

  19. Krishnapuram R, Keller JM (1996) The possibilistic C-means algorithm: insights and recommendations. IEEE Trans Fuzzy Syst 4(3):385–393

    Article  Google Scholar 

  20. Wang ST, Chung FL, Deng ZH (2006) Robust maximum entropy clustering algorithm with its labeling for outliers. Soft Comput 10(7):555–563

    Article  MATH  Google Scholar 

  21. Wei CH, Fahn CS (2002) The multisynapse neural network and its application to fuzzy clustering. IEEE Trans Neural Netw 13(3):600–618

    Article  Google Scholar 

  22. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  MATH  Google Scholar 

  23. Xing HJ, Ha MH (2014) Further improvements in feature-weighted fuzzy C-means. Inform Sci 267:1–15

    Article  MATH  MathSciNet  Google Scholar 

  24. Ma Wenping, Jiao Licheng, Gong Maoguo, Li Congling (2014) Image change detection based on an improved rough fuzzy c-means clustering algorithm. Int J Mach Learn Cybern 5(3):369–377

    Article  Google Scholar 

  25. Alexander S, Joydeep G (2003) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3:583–617

    MATH  MathSciNet  Google Scholar 

  26. Jeng JT, Chuang CC, Tseng CC, Juan CJ (2010) Robust interval competitive agglomeration clustering algorithm with outliers. Int J Fuzzy Syst 12(3):227–236

    Google Scholar 

  27. Gandy L, Rahimi S, Gupta B (2005) A modified competitive agglomeration for relational data algorithm. Annu Meet N Am Fuzzy Inform Process Soc, NAFIPS, pp 210–215

    Google Scholar 

  28. Zhu L, Cao LB, Yang J (2011) Soft subspace clustering with competitive agglomeration. In: Proc. of the 2011 IEEE international conference on fuzzy systems, pp 691–698

  29. Lu Z, Peng YX, Ip Horace HS (2010) Gaussian mixture learning via robust competitive agglomeration. Pattern Recogn Lett 31(7):539–547

    Article  Google Scholar 

  30. Hwang C, Rhee FCH (2007) Uncertain fuzzy clustering: interval type-2 fuzzy approach to c-means. IEEE Trans Fuzzy Syst 15(1):107–120

    Article  Google Scholar 

  31. Yu J, Cheng Q, Huang H (2004) Analysis of the weighting exponent in the FCM. IEEE Trans Syst Man Cybern (Part B) 34(1):634–639

    Article  Google Scholar 

  32. Wang XZ, Ashfaq RAR, Fu AM (2015) Fuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29(3):1185–1196

    Article  MathSciNet  Google Scholar 

  33. Bezdek JC (1980) A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Trans Pattern Anal Mach Intell 2(1):1–8

    Article  MATH  MathSciNet  Google Scholar 

  34. Havrda JH, Charvat F (1967) Quantification method of classification processes: concept of structural α-entropy. Kybernetica 3(1):30–35

    MATH  MathSciNet  Google Scholar 

  35. Guo Gongde, Chen Si, Chen Lifei (2012) Soft subspace clustering with an improved feature weight self-adjustment mechanism. Int J Mach Learn Cybern 3(1):39–49

    Article  Google Scholar 

  36. Jiang YZ, Chung FL, Wang ST, Deng ZH, Wang J, Qian PJ (2015) Collaborative fuzzy clustering from multiple weighted views. IEEE Trans Cybern 45(4):688–701

    Article  Google Scholar 

  37. Kreyszig E (1970) Introductory mathematical statistics: principles and methods. John Wiley, New York

    MATH  Google Scholar 

  38. Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml

  39. Havens TC, Bezdek JC, Leckie C, Hall LO, Palaniswami M (2012) Fuzzy C-means algorithms for very large data. IEEE Trans Fuzzy Syst 20(6):1130–1146

    Article  Google Scholar 

  40. Bezdek JC (1976) A physical interpretation of fuzzy ISODATA. IEEE Trans Syst Man Cybern 6(5):387–389

    MATH  MathSciNet  Google Scholar 

  41. Sun JG, Liu J, Zhao LY (2008) Clustering algorithms research. J Softw 19(1):48–61

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shitong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Chung, Fl. & Wang, S. Generalized competitive agglomeration clustering algorithm. Int. J. Mach. Learn. & Cyber. 8, 1945–1969 (2017). https://doi.org/10.1007/s13042-016-0572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0572-5

Keywords

Navigation