Skip to main content
Log in

A projected-based neural network method for second-order cone programming

International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

A projected-based neural network method for second-order cone programming is proposed. The second-order cone programming is transformed into an equivalent projection equation. The projection on the second-order cone is simple and costs less computation time. We prove that the proposed neural network is stable in the sense of Lyapunov and converges to an exact solution of the second-order cone programming problem. The simulation experiments show our method is an efficient method for second-order cone programming problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Lebret H, Boyd S (1997) Antenna array pattern synthesis via convex optimization. IEEE Trans Signal Process 45:526–532

    Article  Google Scholar 

  2. Lu WS, Hinamoto T (2003) Optimal design of IIR digital filters with robust stability using conic-quadratic-programming updates. IEEE Trans Signal Process 51:1581–1592

    Article  MATH  MathSciNet  Google Scholar 

  3. Luo ZQ (2003) Applications of convex optimization in signal processing and digital communication. Math Program 97B:1581–1592

    MathSciNet  Google Scholar 

  4. Alizadeh F, Goldfarb D (2003) Second-order cone programming. Math Program 95:3–51

    Article  MATH  MathSciNet  Google Scholar 

  5. Kuo Y, Mittelmann Hans D. Interior point methods for second-order cone programming and OR applications. Comput Optim Appl, 28, 255-285 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen XD, Sun D, Sun J (2003) Complementarity functions and numerical experiments for second-order cone complementarity problems. Comput Optim Appls 25:39–56

    Article  MATH  MathSciNet  Google Scholar 

  7. Fukushima M, Luo ZQ, Tseng P (2002) Smoothing functions for second-order cone complementarity problems. SIAM J Optim 12:436–460

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen JS, Tseng P (2005) An unconstrained smooth minimization reformulation of the second-order cone complementarity problems. Math Progr 104:293–327

    Article  MATH  MathSciNet  Google Scholar 

  9. Kanzow C, Ferenczi I, Fukushima M (2009) On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity. SIAM J Optim 20:297–320

    Article  MATH  MathSciNet  Google Scholar 

  10. Tank D, Hopfield J (1986) Simple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Syst, CAS-33, 533C541

  11. Kennedy M, Chua L (1988) Neural networks for nonlinear programming. IEEE Trans Circuits Syst 35(5):554–562

    Article  MathSciNet  Google Scholar 

  12. Hu X, Wang J (2007) Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems. IEEE Trans Syst Man Cybern 37(5):1414–1421

    Article  Google Scholar 

  13. He BS, Yang H (2000) A neural-network model for monotone linear asymmetric variational Inequalities. IEEE Trans Neural Netw 11(1):3–16

    Article  Google Scholar 

  14. Gao X, Liao L, Qi L (2003) A neural network for monotone variational inequalities with linear constraints. Phys Lett A 307:118–128

    Article  MATH  MathSciNet  Google Scholar 

  15. Gao X, Liao L (2009) A new projection-based neural network for constrained variational inequalities. IEEE Trans Neural Netw 20:373–388

    Article  Google Scholar 

  16. Chen JS, Ko CH, Pan SH (2010) A neural network based on the generalized FischerCBurmeister function for nonlinear complementarity problems. Inform Sci 180:697–711

    Article  MATH  MathSciNet  Google Scholar 

  17. Ko CH, Chen JS, Yang CY (2011) Recurrent neural networks for solving second-order cone programs. Neurocomputing 74:3646–3653

    Article  Google Scholar 

  18. Liu DR, Wang D, Yang X (2013) An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs. Inform Sci 220:331–342

    Article  MATH  MathSciNet  Google Scholar 

  19. Chen H, Ni D, Qin J, Li S, Yang X, Wang T, Heng PA (2015) Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J Biomed Health Inform 19:1627–1636

    Article  Google Scholar 

  20. Wang X Z (2015) Uncertainty in learning from big data-editorial. J Intell Fuzzy Syst 28:2329-2330

    Article  Google Scholar 

  21. Lu SX, Wang XZ, Zhang GQ, Zhou X (2015) Effective algorithms of the Moore-Penrose inverse matrices for extreme learning machine. Intell Data Anal 19:743C760

    Article  Google Scholar 

  22. He YL, Wang XZ, Huang JZX (2016) Fuzzy nonlinear regression analysis using a random weight network. Inf Sci. doi:10.1016/j.ins.2016.01.037 (in press)

    Google Scholar 

  23. Ashfaq RAR, Wang XZ, Huang JZX, Abbas H, He YL Fuzziness based semi-supervised learning approach for intrusion detection system (IDS). Inform Sci. doi:10.1016/j.ins.2016.04.019 (in press)

  24. Benson HY, Vanderbei RJ (2003) Solving problems with semidefinite and related constraints using interior-point methods for nonlinear programming. Math Program 95(B):279-302

    Article  MATH  MathSciNet  Google Scholar 

  25. Outrata JV, Sun D (2008) On the coderivative of the projection operator onto the second-order cone. Set-Valued Var Anal 16: 999-1014

    Article  MATH  MathSciNet  Google Scholar 

  26. Kong L, Tuncel L, Xiu N (2009) Clarke generalized jacobian of the projection onto symmetric cones. Set-Valued Var Anal 17:135–151

    Article  MATH  MathSciNet  Google Scholar 

  27. Lobo MS, Vandenberghe L, Boyd S, Lebret H (1998) Application of second order cone programming. Linear Algebra Appl 284:193–228

    Article  MATH  MathSciNet  Google Scholar 

  28. Luenberger DG (1973) Introduction to linear and Nolinear programming. Addison-wesley, MA

    MATH  Google Scholar 

  29. He BS (1994) Solving a class of linear projection equations. Numerische Mathematik 68:7l–80

    Article  MathSciNet  Google Scholar 

  30. He BS (1994) A new method for a class linear variational inequalities. Math Program 66:137–144

    Article  MATH  MathSciNet  Google Scholar 

  31. Slotine J-JE, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  32. Smith TE, Friesz TL, Bernstein DH, Suo ZG (1997) In: Ferris MC, Pang JS (eds) Complementarity and variational problems. State of Art, SIAM, Philadelphia

    Google Scholar 

  33. Leung Y, Chen KZ, Jiao YC et al (2001) A new gradient-based neural network for solving linear and quadratic programming problems. IEEE Trans Neural Netws 12:1074–1083

    Article  Google Scholar 

  34. Ghaoui LEI, Lebret H (1997) Robust solutions to least-squares problems with uncertain data. SIAM J Matrix Anal Appl 18:1035–1064

    Article  MATH  MathSciNet  Google Scholar 

  35. Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11–12:625–653

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaling Zhang.

Additional information

This work was supported by the National Science Foundations for Young Scientists of China (11101320, 61201297), National Science Basic Research Plan in ShaanXi Province of China (Program No. 2015JM1031), and the Fundamental Research Funds for the Central Universities (JB150713).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. A projected-based neural network method for second-order cone programming. Int. J. Mach. Learn. & Cyber. 8, 1907–1914 (2017). https://doi.org/10.1007/s13042-016-0569-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0569-0

Keywords

Navigation